
www.manaraa.com

Declarative Access to Filesystem Data
New application domains for XML database management systems

Alexander Holupirek

Dissertation zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

Fachbereich Informatik und Informationswissenschaft
Mathematisch-Naturwissenschaftliche Sektion

Universität Konstanz

Referenten:
Prof. Dr. Marc H. Scholl

Prof. Dr. Marcel Waldvogel

Tag der mündlichen Prüfung:
17. Juli 2012

http://nbn-resolving.de/urn:nbn:de:bsz:352-206486

www.manaraa.com

www.manaraa.com

Abstract

XML and state-of-the-art XML database management systems (XML-DBMSs) can play
a leading role in far more application domains as it is currently the case.

Even in their basic configuration, they entail all components necessary to act as central
systems for complex search and retrieval tasks. They provide language-specific index-
ing of full-text documents and can store structured, semi-structured and binary data.
Besides, they offer a great variety of standardized languages (XQuery, XSLT, XQuery
Full Text, etc.) to develop applications inside a pure XML technology stack. Benefits
are obvious: Data, logic, and presentation tiers can operate on a single data model, and
no conversions have to be applied when switching in between.

This thesis deals with the design and development of XML/XQuery driven informa-
tion architectures that process formerly heterogeneous data sources in a standardized
and uniform manner. Filesystems and their vast amounts of different file types are a
prime example for such a heterogeneous dataspace. A new XML dialect, the Filesystem
Markup Language (FSML), is introduced to construct a database view of the filesystem
and its contents. FSML provides a uniform view on the filesystem’s contents and allows
developers to leverage the complete XML technology stack on filesystem data.

BaseX, a high performance, native XML-DBMS developed at the University of Kon-
stanz, is pushed to new application domains. We interface the database system with the
operating system kernel and implement a database/filesystem hybrid (BaseX-FS), which
is working on FSML database instances. A joint storage for both the filesystem and the
database is established, which allows both developers and users to access data via the
conventional and proven filesystem interface and, in addition, through a novel declar-
ative, database-supported interface. As a direct consequence, XML languages such as
XQuery can be used by applications and developers to analyze and process filesystem
data. Smarter ways for accessing personal information stored in filesystems are achieved
by retrieval strategies with no, partial, or full knowledge about the structure, format,
and content of the data (“Query the filesystem like a database”).

In combination with BaseX-Web, a database extension that facilitates the development
of desktop-like web applications, we present a system architecture that makes it easier
for application developers to build content-oriented (data-centric) retrieval and search
applications dealing with files and their contents. The proposed architecture is ready
to drive (expert) information systems that work with distinct data sources, using an
XQuery-driven development approach. As a concluding proof of concept, a complete
development cycle for an OPAC (Online Public Access Catalogue) system is presented
in detail.

www.manaraa.com

www.manaraa.com

Zusammenfassung (German Abstract)

XML einerseits und moderne XML-Datenbank-Management-Systeme (XML-DBMS) an-
dererseits können als Basistechnologie weit mehr leisten, als ihnen derzeit zugetraut
wird.

Bereits in ihrer Grundausstattung beinhalten sie alle notwendigen Komponenten, die
für den Aufbau und den Betrieb komplexer Such- und Informationsdienste notwendig
sind. Der Umgang mit Volltexten und deren sprachspezifische Indexierung gehört ebenso
zu den Aufgaben eines modernen XML-DBMSs wie die Speicherung von strukturierten,
semi-strukturierten oder binären Daten.

Sie verfügen über ein reichhaltiges Arsenal an XML verarbeitenden Sprachen (XQuery,
XSLT, XQuery Full Text, etc.) und bieten damit einen kompletten Technologiezweig
an, der es erlaubt, innerhalb einer reinen, also nur auf XML Technologie basierenden
Umgebung Applikationen zu entwickeln. Die Vorteile liegen auf der Hand: Von der Spei-
cherung über die Verarbeitung bis hin zur Ergebnispräsentation kann das gleiche Daten-
modell ohne Transformation zwischen den einzelnen Schichten einer Systemarchitektur
erfolgen.

Die vorliegende Arbeit erprobt die Verwendung von XML-DBMSs auf bisher unbekann-
tem Terrain und untersucht deren Einsatzmöglichkeiten innerhalb moderner Betriebs-
systeme. Wir zeigen, wie über den Einsatz von XML-DBMSen eine deklarative Schnitt-
stelle zur Abfrage von Dateisystem-Inhalten mittels XQuery geschaffen werden kann und
implementieren ein hybrides Datenbankdateisystem (BaseX-FS). Die Technologiestudie
erlaubt es, auf den Daten des Dateisystems, sowohl konventionell, also über die vom
Betriebsystem angebotenen system calls und den filesystem namespace, zu arbeiten, als
auch mit Hilfe der vom Datenbanksystem angebotenen deklarativen Zugriffsmethoden.
Das heisst insbesondere, dass die in BaseX-FS gespeicherten Dateien semantisch und
inhaltsbezogen über XQuery abgerufen und verarbeitet werden können, als auch, dass
über die Verzeichnishierarchie inhaltsbezogene Daten einer Datei exportiert und mit
konventionellem File I/O bearbeitet werden können.

Unter Verwendung von BaseX-FS als Basisarchitektur lässt sich zeigen, dass zahlreiche
Dienste, wie zum Beispiel Desktopsuchmaschinen sehr viel leichtgewichtiger implemen-
tiert und funktional erweitert werden können, als dies bisher der Fall ist.

Zusammen mit BaseX-Web, einer Datenbankerweiterung, die es erlaubt, desktop-ähnliche
Web-Applikationen zu entwickeln, zeigen wir, dass sich die vorgestellte erweiterte Daten-
bankarchitektur sehr gut für den Aufbau von Expertensuchsystemen, wie zum Beispiel
eines Online Public Access Catalogues (OPAC), eignet.

www.manaraa.com

www.manaraa.com

Contents

Abstract 3

Zusammenfassung 5

1 Introduction 9
1.1 Motivation . 14

1.1.1 Intrinsic Motivation - Personal Data Mess 14
1.1.2 Professional Challenge - Retrieval Support for Filesystems 14

1.2 Problem Description . 15
1.3 Research Approach . 18
1.4 Contribution and Outline . 20

2 The BaseX Filesystem View 25
2.1 Joint Storage for Filesystem and Database 26

2.1.1 The pre/distance/size Encoding . 26
2.1.2 The Encoded File Hierarchy . 28

2.2 Leverage Tacit Information Hidden in Files 29
2.2.1 Transducers – Filetype-specific Data Extractors 30
2.2.2 Implementation of a Transducer 32

2.3 A Deeper Filesystem – The Metadata Hierarchy 33
2.4 Related Work . 36
2.5 In a Nutshell . 37

3 An XML Database as Filesystem 39
3.1 On Filesystem Prototyping . 40

3.1.1 Stackable Filesystems . 41
3.1.2 Filesystem in Userspace . 44

3.2 Mounting the Database as a Filesystem 49
3.2.1 System Architecture . 49
3.2.2 Implementation Details . 50
3.2.3 Assessment . 54

3.3 Database-aware Applications . 57
3.3.1 XQuery your Filesystem . 57
3.3.2 Visual Access to Large Filesystem Data 60

3.4 Considerations . 65

7

www.manaraa.com

Contents

4 XQuery Application Framework 67
4.1 Maturity of Web Applications . 68
4.2 Related Work . 69

4.2.1 Sausalito – XQuery in the Cloud 71
4.2.2 eXist – the XQuery Servlet . 72

4.3 System Overview . 74
4.3.1 Model-View-Controller . 76
4.3.2 Application Layout . 79
4.3.3 Request-Response Cycle . 80

4.4 Summary . 82

5 Kickstarting an Infrastructure 85
5.1 Online Public Access Catalog (OPAC) . 85
5.2 Konstanz Online Publication System (KOPS) 86
5.3 XML OPAC . 88

5.3.1 Intention . 88
5.3.2 Foundation: General System Setup 89
5.3.3 Configuration: Shaping a Retrieval Application 91

5.4 Evaluation Setup . 94
5.5 Queries and Performance Results . 95

5.5.1 Keyword Search . 95
5.5.2 Phrase Search . 97
5.5.3 Boolean Search . 100

5.6 Summary . 101

6 Conclusion 103

List of Figures 106

List of Listings 110

List of Tables 113

Bibliography 114

Appendix 123

8

www.manaraa.com

1 Introduction

Today, almost exactly 14 years after the W3C released the first XML Recommendation
on February 10, 1998 [8], XML has become an integral part of modern information
systems. The markup language was originally envisioned as a language for defining new
document formats and is suited especially well for that purpose. Besides it offers a rich
set of accompanying standards1, languages and processing techniques dealing with XML
data:

XQuery 1.0: An XML Query Language “that uses the structure of XML intelligently
[to] express queries across all […] kinds of data, whether physically stored in XML
or viewed as XML via middleware. XQuery is a full declarative programming lan-
guage, and supports user-defined functions, external function libraries (modules)
referenced by URI, and system-specific native functions.” [53]

XQuery Update Facility (XQUF) “provides expressions that can be used to make per-
sistent changes to instances of the XQuery 1.0 and XPath 2.0 Data Model.” [54]

XQuery and XPath Full Text (XQFT) “a language that extends XQuery 1.0 and XPath
2.0 with full-text search capabilities. XML documents may contain highly struc-
tured data (fixed schemas, known types such as numbers, dates), semi-structured
data (flexible schemas and types), markup data (text with embedded tags), and
unstructured data (untagged free-flowing text). Where a document contains un-
structured or semi-structured data, it is important to be able to search using
Information Retrieval techniques such as scoring and weighting.” [12]

XSLT (XSL Transformations) 2.0 “a language for transforming XML documents into
other XML documents. The term stylesheet reflects the fact that one of the impor-
tant roles of XSLT is to add styling information to an XML source document, by

1http://www.w3.org/standards/xml/

9

http://www.w3.org/standards/xml/

www.manaraa.com

1 Introduction

transforming it into a document consisting of XSL formatting objects (see Extensi-
ble Stylesheet Language (XSL)), or into another presentation-oriented format such
as HTML, XHTML, or SVG. However, XSLT is used for a wide range of transfor-
mation tasks, not exclusively for formatting and presentation applications.” [43]

XSL: The Extensible Stylesheet Language. “Given a class of arbitrarily structured XML
documents or data files, designers use an XSL stylesheet to express their intentions
about how that structured content should be presented; that is, how the source
content should be styled, laid out, and paginated onto some presentation medium,
such as a window in a Web browser or a hand-held device, or a set of physical
pages in a catalog, report, pamphlet, or book.” [4]

XProc: An XML Pipeline Language “for describing operations to be performed on
XML documents. An XML Pipeline specifies a sequence of operations to be per-
formed on zero or more XML documents. Pipelines generally accept zero or more
XML documents as input and produce zero or more XML documents as out-
put.” [66] Operations can be of different nature but typically include validation,
transformation, or querying of XML data.

XQSE: XQuery Scripting Extensions. “XQuery is a functional language that is Turing-
complete and well suited to write code that ranges from simple queries to com-
plete applications. However, some categories of applications are more easily im-
plemented by combining XQuery capabilities with some imperative features, such
as the ability to explicitly manage internal states. The same issue stands for
XQuery enriched with the XQuery Update Facility [...]. The scripting extension
is intended to overcome this problem, and allow programmers to write such ap-
plications without relying on embedding XQuery into an external language.” [15],
[60]

Fourteen years ago, a key feature, the easy definition of new document formats, paved the
way for the huge success of XML as a data exchange format. Compared to ASN.1—a
standard for the abstract definition of data types and an, at that time, established
method to communicate between heterogeneous systems—the uniform description of
data in XML and its subsequent processing is a straight-forward task. XML, as a
textual format, is easy to edit, simple to parse and may represent structured, semi-
structured or unstructured data. Associating XML files with a schema allows to validate

10

www.manaraa.com

XML contents, but a less complicated ad-hoc approach—the so-called schema-agnostic
processing—is possible as well and widely-used in practice.

While XML, in its early years, has been mostly used for data exchange—for example
as a replacement of older formats in Electronic Data Interchange (EDI)—it was soon
accepted as a suitable data storage format by many applications. In the beginning, only
small files like the famous .ini or other textual configuration files have been replaced.
But other applications, such as Apache’s ant(1) software build tool2, chose XML from
the start. Integration of XML parsers in just about any common programming language
made this a comprehensible choice. It allows the use of a standardized toolchain to
parse files, check their validity against a Document Type Definition (DTD) or XML
Schema Definition (XSD) and subsequently process the data accordingly. The files are
readable by both humans and machines and can therefore easily be modified and adapted
manually or automatically.

As the story goes on, more applications joined the party and chose XML as a storage
format. A prime example is the OASIS Open Document Format (ODF). It “is an
open XML-based document file format for office applications to be used for documents
containing text, spreadsheets, charts, and graphical elements. The file format makes
transformations to other formats simple by leveraging and reusing existing standards
wherever possible.” [67]

What we can observe in general today is an ever increasing number of XML collections
emerging in different areas of application. Best practice, storing XML files in the filesys-
tem, is more and more becoming a bottleneck, and an increasing interest in supporting
database technologies can be observed, especially in the industrial sector.

During the first hype of XML, processing XML with dedicated database systems could
not fulfill people’s expectations. Systems were unstable and not ready for production
or did not meet the demands in terms of processing speed or scalability. After a poor
start, the situation has changed. Now, a decade later, we face market-ready XML
databases in just about every big players database portfolio. Besides well established
database providers, such as Oracle, IBM and Microsoft, several smaller companies and
open source projects, solely focussed on XML, emerged and matured:

2Apache Ant is very similar to the popular Unix make(1) tool. Its mission is to orchestrate processes
(described in build files as targets and extension points) dependent upon each other. XML is used
in the build files to define the rules to compile, assemble, test and run applications.

11

www.manaraa.com

1 Introduction

MarkLogic is the leading company in the niche market of XML database management
systems. Their credo is to provide “21st century technology for 21st century chal-
lenges” [45]. For MarkLogic “traditional relational databases were built for another
era and organizations are seeking alternatives to address today’s information man-
agement challenges” [45].

“Organizations are struggling to manage and leverage Big Data. Unstructured in-
formation and other complex, valuable data can be particularly difficult to capital-
ize on. Examples of unstructured information include: documents, rich media like
images or videos, metadata, content, user-generated content, RSS feeds, e-mail,
geospatial data, and XML among others. Typically, unstructured information has
one or more of the following characteristics:

• Heterogeneous (different formats, varying standards, irregular lengths, etc.)
• Constantly evolving in ways that may be unanticipated
• Growing exponentially

These characteristics make it difficult to manage unstructured information us-
ing previous technologies, such as relational databases, which typically expect
reasonably-sized data that is normalized and conforms to a pre-defined schema.

MarkLogic 5 is the company’s flagship product: a next generation database for
managing and leveraging Big Data and unstructured information. Such infor-
mation may be textual, irregular, hierarchical, de-normalized, time-varying, or
structured in an unexpected way.” [46]

Documentum xDB is offered by EMC Corporation as a “high-performance and scalable
native XML database designed for software developers who require advanced XML
data processing and storage functionality within their applications. xDB enables
high-speed storage and manipulation of very large numbers of XML documents.
Using xDB, programmers can build custom XML content management solutions
and store XML documents in an integrated, highly scalable, high-performance,
object-oriented database.” [14]

Quizx is “a fast XML database engine fully supporting XQuery. Qizx is designed from
the ground up to perform fast queries, without requiring specific efforts from users.
Queries run at full speed out of the box without the need to manually define

12

www.manaraa.com

indexes, tweak parameters, or add a new index.” [51]

eXist-db “is an open source database management system. It stores XML data accord-
ing to the XML data model and features efficient, index-based XQuery processing.
It supports many Web 2.0 technology standards, making it an excellent platform
for developing web-based applications.” [48]

Sedna “is a free native XML database which provides a full range of core database
services - persistent storage, ACID transactions, security, indices, hot backup.
Flexible XML processing facilities include W3C XQuery implementation, tight
integration of XQuery with full-text search facilities and a node-level update lan-
guage.” [36]

BaseX “is a very light-weight, high-performance and scalable XML Database engine
and XPath/XQuery Processor, including full support for the W3C Update and
Full Text extensions. Various interactive and user-friendly graphical user interfaces
give great insight into stored XML documents. BaseX is developed at the Chair
of Databases and Information Systems at the University of Konstanz as an open
source system under the terms of the BSD license.” [13]

In addition there are Saxon3 and Zorba4, powerful XQuery processors of high renown
in the community.

Given these developments, we want to tap the full potential of current XML-DBMSs
and put them to the test in somewhat unfamiliar territories. Our bold statement is
that XML databases with their current characteristics can serve as core components
for search and retrieval systems on heterogeneous data sources. Filesystems are prime
examples. They store vast amount of heterogeneous data formats. Providing means to
programmatically query, process and analyze personal data stored in filesystem would
be a major improvement over current filesystem abilities.

3http://www.saxonica.com/
4http://zorba-xquery.com

13

http://www.saxonica.com/
http://zorba-xquery.com

www.manaraa.com

1 Introduction

1.1 Motivation

1.1.1 Intrinsic Motivation - Personal Data Mess

Trying to find things—I definitely know I have—is a common task for me. This is true
for my real life (but, lucky me, there are always nice people around helping me out) and
even more for my digital self.

As a matter of fact, it is getting worse all the time. Cloud storage and multiple mobile
devices do not simplify matters in this respect. With every new machine my disk space
to mislay things increases.

Of course, it may be considered a bad habit to just copy data over from my old machine to
the new laptop instead of curating, archiving and purging data from the working system.
But I seem to be in good company and in-line with established practice: Already back in
2002, Jim Gray, while talking about data curation, pointed out that a “decade ago, 100
GB was considered a huge database. Today it is about 1/2 of a disk drive and is quite
manageable. […] so it is both economical and desirable to bring the old data forward
and store it on newer technology.” [20]

In fact, mere storage of (personal) data in state-of-the-art filesystems is a markedly well
done job in current operating systems. Convenient access to and information retrieval
from such data, however, is crucial to leverage the stored information. Recent variants
of operating systems therefore come with integrated search capabilities5 or can easily
be equipped with a third-party desktop search application. These tools clearly offer a
smarter way to access personal information stored in the filesystem (and tell me that
I’m not alone needing help to recover once stored assets).

1.1.2 Professional Challenge - Retrieval Support for Filesystems

Working in a database group, however, I can not be satisfied. We, occupationally, want
to store anything we consider useful in a database and have it ready to be queried.

5(e.g., Instant Search on the Windows platform, the Spotlight architecture on Macintosh, or Tracker
and Beagle on Linux systems)

14

www.manaraa.com

1.2 Problem Description

The way we want to explore our data is via a standardized and established database
query language (DQL). Finding things using a keyword-based search expression is just
the beginning of what we would expect from an information system that keeps track of
our (personal) data.

Since the beginning of database management systems, there is a desire to store all data
in a database and have it ready to be queried. Several industrial and research efforts such
as WinFS or the Be Filesystem have been made to push the filesystem into a database.
None made it to technical production quality.

Offshoots, like Microsoft’s Instant Search or Apple’s Spotlight Architecture, however,
can be found in all of the recent operating system variants, and a user demand for
products helping to find relevant content can be derived from the increasing popularity
of Desktop Search Engines, such as Google’s or Yahoo’s Desktop Search.

While these tools offer a smarter way to access personal information stored in the filesys-
tem, the keyword-driven search approach, as used by today’s search engines, is—while
perfectly suitable for the everyday business—just the beginning of what can be ex-
pected.

An additional support for database style query languages to “filter, select, search, join,
sort, group, aggregate, transform, and restructure”, in short, analyze and programmati-
cally process, stored data, would be a consequential further development.

1.2 Problem Description

We generally face the fact that the amount of data stored in filesystems on personal
computers is growing steadily. This comes as no surprise since—against current opin-
ion—data gets copied from old machines to new ones instead of being archived. This
may be considered a bad habit, but it surely is a side effect of storage capabilities in-
creasing at low cost, and thus cannot be condemned. Therefore filesystems contain a
significant amount of text documents, images, and multimedia files.

While the mere storage is an easy-to-manage task, convenient access to and information
retrieval from huge amounts of data is crucial to leverage the stored information. Current

15

www.manaraa.com

1 Introduction

filesystems and their proven, but basic interface (VFS) support neither.

Donald Norman coined the phrase “Attractive things work better” [50]. While Norman’s
statement, in the first place, aimed at pushing aesthetics and attractiveness into user
interfaces, it suits well for any human-centered design approach. Without usability, joy
of use cannot evolve. Ease of use, on the other hand, is crucial, and for a data storage
system is determined by the ability to search/find and access/use stored data.

In fact, the challenge we now face (and will even more in the future) is to enhance
storage systems in a way that users can make full use of their data. Finding and
programmatically process relevant content in this ever growing amount of data is a major
aspect. Filesystems still focus on mere storage and tend to be conservative regarding
feature enhancements [70]. Consequently, they do not offer solutions to this demanding
task.

Current solutions to find files are developed outside the filesystem as separate, concur-
rent systems. Redundant storage of metadata is common practice in modern operating
systems and applications. Integrated file indexing services, such as Windows Search or
Apple’s Spotlight, crawl the filesystem in order to harvest metadata. Domain-specific
applications, such as audio players or e-mail applications, harvest relevant information
for their file types and store them in accompanying index structures. The extracted
information is used to provide retrieval and search functionality to the user. In times
of ever increasing personal data masses, this obviously is a frequently demanded and
useful feature.

Today’s solutions do not develop the exploration of the collected metadata to the maxi-
mum. Application-specific solutions fail to reoffer the extracted information via a public
interface. As such, they hide relevant data, and peer applications have to perform the
same work again.

System-wide APIs to access the stored information use an imperative programming
style only and, while suited to access single data items, do not allow for sophisticated
declarative programming. While we consider keyword-driven search a suitable approach
for end-users and ad-hoc queries, we postulate that it is not enough to cope with the
explosive growth of personal information and the full variety of present and future search
and retrieval tasks.

16

www.manaraa.com

1.2 Problem Description

A more general and ideally standardized storage facility for the harvested data would
make it easier for applications and developers to profit from the tediously collected
information.

We opt for XML database technology to provide such an infrastructure and to establish a
system-wide service to export harvested metadata in a standardized, well-defined format
that is suitable for further processing. Choosing XML allows to leverage the complete
and feature rich X-technology stack developed and standardized by the World Wide Web
Consortium (W3C).

Therefore, we propose the description of filesystem’s contents and metadata applying
an XML dialect, to use a high-performant and scalable XML store, together with a
full-fledged and highly compliant XQuery processor to system-wide expose the collected
data.

J DB/FS S

Declarative (Query)
Access

Conventional
File I/O

Metadata-aware
File Access

DB-aware applications
(Database Road)

DB-unaware applications
(Filesystem Trail)

XML
STORAGE

Applications
Users

Developers

XML databaseUnix filesystem

 Binary
Backing

Store

Figure 1.1: Dual access to filesystem data

The approach has two main effects: It will provide an additional semantic, content-
related view on the filesystem and its stored content. Using XML it becomes possible to
express the logical structure of files (as also proposed by semantic desktop or filesystem
approaches). That way, the system knows about the insides of a data source and can

17

www.manaraa.com

1 Introduction

retrieve parts of it (for instance just the subject of an e-mail). This stands in stark
contrast to current filesystems, that treat files as a mere sequence of bytes. Database-
aware applications are able to directly query and process this information and have a
more fine-grained view on the system. Interconnections between data assets of different
kinds, for example, can be explored more easily using a declarative query language that
is designed to this end. We will re-export the collected data back in the filesystem
namespace, so that legacy applications can profit as well. Finally, conventional File I/O
for database-unaware applications as well as database-enhanced access to the same data
is provided. Figure 1.1 on the preceding page illustrates the concept.

1.3 Research Approach

Despite the fact that several database-driven filesystem attempts have already failed,
the advent of XML brought some significant enhancements to DBMS that inspired us
to dare another attempt.

In a preliminary study [34], we evaluated the mapping of a file hierarchy and its content
to XML and emulated filesystem operations using XPath/XQuery/XQUF operations.
We found it possible to perform basic filesystem commands, as well as content-based
retrieval, in interactive time on the constructed filesystem mappings with an off-the-shelf
XML database. Motivated by these results we pushed the idea forward.

The tree-based XML model has spawned efforts on relational storage and processing
techniques for hierarchically structured data and meanwhile, DBMSs have learned to
work with tree-shaped data (e.g., [5, 6, 22–24]). This is of direct benefit, as the hier-
archic nature of filesystems can now consistently be mapped to the relational storage
(see Figure 1.2 on the next page) and leverage the associated algorithms (an elaborate
discussion of relational XML storage and algorithms can be found in [64, Chapter 2]).

BaseX, the database we use within this project, is also built on a relational encoding
scheme as will be discussed in Chapter 2 on page 25.

A major problem of storing files in a DBMS (apart from using BLOBs) has been the basic
necessity of providing a schema first. With an unmanageable amount of file formats this
appears to be impossible. Schema-oblivious storage techniques made it possible for XML

18

www.manaraa.com

1.3 Research Approach

..

0<a>
1

2<c>
3<d/>0

4<e/>1
</c>2

3

5<f>
6<g/>4

7<h>
8<i/>5

9<j/>6

</h>7

</f>8
9

.

0 a 9

.
1 b 3

.
2 c 2

.

3 d 0

.

4 e 1

.
5 f 8

.
6 g 4

.
7 h 7

.

8 i 5

.

9 j 6

.

pre post n
0 9 a
1 3 b
2 2 c
3 0 d
4 1 e
5 8 f
6 4 g
7 7 h
8 5 i
9 6 j

............................

Figure 1.2: Basic (simplified) idea of storing trees (such as file hierarchies, XML docu-
ments) in a RDBMS [21]

data to be stored in the database without previous knowledge of its interior structure6.

As mentioned, more and more applications use XML as their native storage format any-
way. Data of this kind is already prepared to be handled with database technology.
From our point of view, these documents are nothing else but serialized database in-
stances. In consequence, they are not only stored as plain text, but directly shredded7

into the DBMS. Legacy applications are still able to process them conventionally by re-
questing them in their serialized, i.e., textual representation. In direct communication
with the database, however, XML processing languages such as XPath/XQuery can be
used on the data. Going through with the concept, and as filesystems are structured hi-
erarchically, it seems to be a natural thing to also map the file hierarchy into tree-aware
DBMSs.

6An additional XML Schema specification for the file type may be of advantage to formulate queries
against the document, but is not mandatory.

7A terminus technicus used to indicate the conversation of XML in its textual representation to an
internal format used by the database. Read it as “import”.

19

www.manaraa.com

1 Introduction

1.4 Contribution and Outline

We will design and develop an XML/XQuery driven information architecture that works
on formerly heterogeneous data sources in a standardized and uniform manner, lever-
aging semi-structured database techniques. The system will provide both proven and
stable access to the data using filesystem techniques and query support for all stored
files. As a consequence, our architecture will provide the following novel features:

• Database query capabilities on filesystem data as a general system service
• Unified view on (formerly heterogeneous) filesystem contents
• Declarative API to work with file objects
• Metadata-aware file access through the filesystem namespace

Furthermore, we will present work at different layers of a suitable DBMS architecture and
show how application development inside a pure X-Technology Stack can be achieved.

Foundation. In a first step, we provide an xmlified, database-centric view of the
filesystem’s content. We gather file contents and express them in a new XML dialect
designed for that purpose: FSML, the Filesystem Markup Language. The result is
stored as a BaseX-FS database instance and ready to be queried via XQuery and related
languages. That way we provide an unified view on filesystem data. It is the base for
processing heterogeneous filesystem data with semi-structured database technology and
will be described in the next Chapter.

The Database as Filesystem in Chapter 3 will dig down and contribute an implemen-
tation that establishes a link between DBMS and OS and shows how a database with
XML/XQuery support can be used as a user-level filesystem. As a result, the DBMS is
mounted as a Unix filesystem by the operating system kernel. Consequently, access via
the established filesystem interface as well as database-enhanced access to the same data
is provided (joint storage for filesystem and database). The database filesystem hybrid
will provide metadata-aware file access (“deep access”) over the conventional filesystem
interface.

Declarative Application Programming Interface. Having established the uniform
view on heterogeneous filesystem data, we move up to the database frontend and show
how the new database filesystem infrastructure can be used to facilitate, support and, in

20

www.manaraa.com

1.4 Contribution and Outline

the final analysis, change application development. The system now provides a declar-
ative application programming interface, and database-aware applications can directly
profit from the database infrastructure. A selection of user interfaces implemented as
BaseX views will demonstrate this and show how databases can be turned into primary
processors for users and application developers dealing with information stored in files.

An XQuery Application Framework. In Chapter 4, we push the idea even fur-
ther and develop an XQuery application framework to enable developers to implement
database-aware applications inside a clean XML technology stack. Our expectation
is that implementations developed on top of a pure W3C technology stack will show
simpler, more flexible, and more efficient application code.

Kickstarting an Infrastructure. To finally demonstrate the feasibility of our ap-
proach and to put our architecture to the test we provide an actual example application
and describe the development of an expert retrieval system from scratch. It leverages
declarative access on documents stored in the filesystem (BaseX-FS), makes use of our
application framework (BaseX-Web), and is built solely on XML technology.

Big picture. Figure 1.3 on page 23 illustrates the big picture. Users, developers, and
applications gain two access paths to filesystem data. Database-enhanced (declarative,
“queryable”) access to data is provided as illustrated in the upper half of the figure
entitled as “Database Road”. It allows for a uniform view on formerly heterogeneous
data stored in the filesystem (Chapter 2). An XQuery Application Framework (Chapter
4) permits application development using a declarative programming style and allows
developers to stay inside a clean standardized technology stack approved by the W3C.

Legacy access to filesystem data is still provided. A joint storage for filesystem and
database is set up and the database is mounted as a filesystem by the operating system
kernel (Chapter 3). That way both stable and proven access via the established filesys-
tem interface as well as database-enhanced access can be achieved since the filesystem is
the database and the database is the filesystem. This additionally allows for improved,
metadata-aware (so-called deep) access—as it allows to navigate into the file—via the
filesystem namespace.

Generalization. We will apply XML technology to implement what is typically con-
sidered to be solved by a variety of different languages and concepts, including low-level
system programming. As such, we target new application domains for XML database

21

www.manaraa.com

1 Introduction

management systems and propose enhancements for XML database architectures. The
existing BaseX XML database management system is taken as a representative. Finally,
the techniques discussed will serve as a general blueprint on how to design and develop
XML/XQuery driven information architectures that work on formerly heterogeneous
data sources in a standardized and uniform manner.

22

www.manaraa.com

1.4 Contribution and Outline

<
!
-
-

X
M
L

F
i
l
e

H
i
e
r
a
r
c
h
y

-
-
>

<
d
i
r

n
a
m
e
=
"
h
o
m
e
"

…
>

…

<
f
i
l
e

n
a
m
e
=
"
s
o
n
g
.
m
p
3
"

…
>

…

<
/
f
i
l
e
>

<
/
d
i
r
>

<
!
-
-

E
x
t
e
r
n
a
l
i
z
e
d

m
e
t
a
d
a
t
a

-
-
>

<
a
l
b
u
m
>
…
<
/
a
l
b
u
m
>

<
a
r
t
i
s
t
>
B
o
b

D
y
l
a
n
<
/
a
r
t
i
s
t
>

<
t
i
t
l
e
>
…
<
/
t
i
t
l
e
>

J



D
B/

FS
 S





.
n
e
w
s
.
p
d
f
.
d
e
e
p
f
s

|
-
-

a
u
t
h
o
r

|
-
-

p
a
g
e
s

|

`
-
-

p
a
g
e
.
t
x
t

`
-
-

s
u
b
j
e
c
t

h
o
m
e

|
-
-

I
m
a
g
e
s

|
-
-

D
o
c
u
m
e
n
t
s

|

`
-
-

n
e
w
s
.
p
d
f

`
-
-

M
u
s
i
c

B


X-
W


B


X-
FS

A
pp

lic
at

io
ns

U
se

rs
D

ev
el

op
er

s

 B
in

ar
y

Ba
ck

in
g

St
or

e

XM
L

ST
O

RA
G

E
U




 X

M
L

V


O


H








 F






 D



XQ



 A






 F








D
ec

la
ra

tiv
e

ac
ce

ss
 to

 fi
le

s u
si

ng
 X

-t
ec

hn
ol

og
y

st
ac

k
(D

es
kt

op
 S

ea
rc

h,
 P

er
so

na
l I

nf
or

m
at

io
n

M
an

ag
em

en
t,

…
)

A
cc

es
s v

ia
 fi

le
sy

st
em

 n
am

es
pa

ce
M

et
ad

at
a-

aw
ar

e
fil

e
ac

ce
ss

D
B-

aw
ar

e
ap

pl
ic

at
io

ns
(D

at
ab

as
e

Ro
ad

)

D
B-

un
aw

ar
e

ap
pl

ic
at

io
ns

(F
ile

sy
st

em
 T

ra
il)

Fi
gu

re
1.

3:
Bi

g
pi

ct
ur

e
an

d
ul

tim
at

e
go

al
:A

pp
lic

at
io

ns
,u

se
rs

,a
nd

de
ve

lo
pe

rs
ga

in
tw

o
ac

ce
ss

pa
th

st
o

fil
e

co
nt

en
ts

.
Pr

ov
en

an
d

st
ab

le
ac

ce
ss

vi
a

th
e

fil
es

ys
te

m
in

te
rfa

ce
is

re
ta

in
ed

.
A

n
en

ha
nc

ed
,

m
et

ad
at

a-
aw

ar
e

(d
ee

p)
fil

e
ac

ce
ss

is
pr

ov
id

ed
as

th
e

da
ta

is
st

or
ed

in
a

jo
in

t
st

or
ag

e
fo

r
fil

es
ys

te
m

an
d

da
ta

ba
se

.
T

he
da

ta
ba

se
is

m
ou

nt
ed

as
a

fil
es

ys
te

m
by

th
e

op
er

at
in

g
sy

st
em

ke
rn

el
(“

Fi
le

sy
st

em
Tr

ai
l”

).
D

at
ab

as
e-

en
ha

nc
ed

(d
ec

la
ra

tiv
e,

“q
ue

ry
ab

le
”)

ac
ce

ss
ca

n
le

ve
ra

ge
th

e
co

m
pl

et
e

ra
ng

e
of

X
M

L
te

ch
no

lo
gi

es
on

fil
es

ys
te

m
da

ta
.

A
dd

iti
on

al
ly

an
ap

pl
ic

at
io

n
fra

m
ew

or
k

to
bu

ild
so

ftw
ar

e
in

sid
e

a
un

ifi
ed

W
3C

st
ac

k
is

pr
op

os
ed

(“
D

at
ab

as
e

Ro
ad

”)

23

www.manaraa.com

www.manaraa.com

2 The BaseX Filesystem View

Ever-growing data volumes demand for storage systems beyond current filesystems abil-
ities, particularly a powerful querying capability. With the rise of XML, the database
community has been challenged by semi-structured data processing, enhancing their
field of activity. Since filesystems are structured hierarchically they can be mapped to
XML and as such stored in and queried by an XML-aware database system. Filesys-
tems typically store vast amounts of heterogeneous file and data formats. The lack of a
unified representation, however, makes it difficult for query languages to work through
the data.

In the following, we present FSML, the Filesystem Markup Language, a novel XML
dialect that maps filesystem entities to XML nodes. BaseX, a native XML database
system, is used to store FSML instances in order to provide a standardized, uniform,
and high-level representation of a filesystem. The proposed mapping will later on be
used to:

Work on filesystem data using a database query language. XQuery, for example, can
be used to search through, program with or analyze the data of a filesystem.

Mount the database as a filesystem by the operating system. We will establish a link
between database and operating system. The database will be mounted as a con-
ventional filesystem by the operating system kernel.

Implement applications using a declarative/functional programming style whenever it
comes to the processing of file data. Traditionally, files are roughly classified as
either text or binary. We add XML as a third type and expose formerly locked
away content of files in a well-defined format with both, its structure and content.

The unified representation of a filesystem can be leveraged by applications, developers

25

www.manaraa.com

2 The BaseX Filesystem View

and users. It is, however, in first place targeted at application developers to finally offer a
new declarative way of dealing with filesystem data. In Chapter 3 we show how XQuery
can be used in the domain of system programming. We will hook the database into the
operating system and re-export the database content via the filesystem namespace.

2.1 Joint Storage for Filesystem and Database

In Figure 1.3 on page 23 we gave a high-level overview of the system’s architecture. A
key element is the joint storage system used by both the filesystem and the database.
BaseX supports the storage of semi-structured XML and binary data. We will use its
storage layer to assemble all data necessary to drive a filesystem (file hierarchy, filesystem
metadata, user data).

The XML Store supports updates and, beside the usual name, path, and value indexes,
maintains two full-text index structures: A fuzzy index is centered on specialized ap-
proximate matches, and a trie index supports wildcard queries. Both versions yield fast
results for exact queries [28]. The system is an early adopter of the XQuery Full Text Rec-
ommendation [12] and supports sequential scanning, index-based, and hybrid processing
of full-text queries. The support for textual retrieval at the core of the database engine
makes BaseX a good choice to power our content-aware filesystem representation.

2.1.1 The pre/distance/size Encoding

BaseX’ storage layer uses a pre/distance/size encoding for XML data with various com-
pactification techniques, such as attribute and integer inlining [25]. It is derived from
the XPath Accelerator encoding [21], which is used in the MonetDB/XQuery system1.
Those flat tree encodings have proven to show excellent query performance [6, 23, 25,
26].

Figure 2.1 shows a pre/distance/size encoded tree. The pre value is dense and ordered
for the complete tree structure, and it is implicitly given by its position. dist defines the

1http://www.monetdb-xquery.org/

26

http://www.monetdb-xquery.org/

www.manaraa.com

2.1 Joint Storage for Filesystem and Database

..

$ tree ./a
0a0
|-- 1b1
| `-- 2c1
| |-- 3d1
| `-- 4e2
`-- 5f5

|-- 6g1

`-- 7h2

|-- 8i1
`-- 9j2

.

<a>

<c>
<d/>
<e/>

</c>

<f>

<g/>
<h>

<i/>
<j/>

</h>
</f>

.

0 a 0

.

1 b 1

.

2 c 1

.

3 d 1

.

4 e 2

.

5 f 5

.

6 g 1

.

7 h 2

.

8 i 1

.

9 j 2

.

pre dist size n

0 0 9 a
1 1 3 b
2 1 2 c
3 1 0 d
4 2 0 e
5 5 4 f
6 1 0 g
7 2 2 h
8 1 0 i
9 2 0 j

............................

Figure 2.1: Storing trees (such as file hierarchies, XML documents) in the pre/distance/
size encoding

relative distance to the parent pre value, and size contains the number of descendants
of a node.

To facilitate updates, the table structure is organized in disk blocks. A block directory
references the first pre value of each block. The dist and size values have to be
modified if deletions/insertions are performed: The size values are updated for all
ancestors of that node—which means that a maximum of log(n) nodes in the tree has
to be accessed—and the dist values are updated for the following siblings and the
following siblings of the ancestor nodes. In comparison, e.g., the storage of absolute
parent references would ask for a complete renumbering of all nodes in the tree table
that follow a deleted/inserted node, rendering it inapt for updates in filesystems.

27

www.manaraa.com

2 The BaseX Filesystem View

2.1.2 The Encoded File Hierarchy

As the pre/distance/size encoding is essentially a storage for tree structures, it can be
seamlessly used to store the file hierarchy of a filesystem. The hierarchical mapping of
filesystems is straight-forward, as illustrated in Figure 2.1.

A more detailed view of the joint storage [33] is shown in Figure 2.2.

...

... ...

size
...

pre dist

...

...

...

... ...

F H T (FSML)

0

0

11

0

0

0

1

00

11 0 1

0

01 0

1

1

1 1

1

1

B B S

<!-- XML File Hierarchy (FSML) -->
<dir name="home" …>
 …
 <file name="homepage.xhtml" …>
 <content db-name="…" …/>
 </file>
 <file name="song.mp3" atime="…>
 <metadata transducer="…/>
 </file>
</dir>

<!-- Native XML data -->
<xhtml>...</xhtml>

<!-- Metadata of binary -->
<ID3v2:title>...</ID3v2:title>

XML S

...

......... ...

sizedistpre ...

XML/XQ V   F J DB/FS S

Figure 2.2: Joint storage for filesystem and database. Uniform XML representation of
filesystem content

From the XML/XQuery perspective, the system stores an XML representation of the
filesystem, which is valid against a W3C XML Schema Definition. A BaseX-FS database
instance consists of three components:

• The FSML database that contains the file hierarchy tree.
• XML databases for well-formed native XML documents and extracted information

from files.
• The binary backing store that stores raw data for any file in the file hierarchy,

except those XML files turned into a database.

Any information relevant to operate a traditional filesystem is stored in the “File Hier-
archy Table” and is accessible for the XQuery processor as well as for operating system

28

www.manaraa.com

2.2 Leverage Tacit Information Hidden in Files

requests, as we will see later. Following the Unix tradition there are block and character,
directory, fifo, (symbolic) link, socket and regular file types. Each file type is expressed
as XML element, e.g., <file/>, and augmented with its file attributes (file size, access
time, protection mode, …).

<file name="05_like_a_rolling_stone.mp3" suffix="mp3" st_mode="100644"
st_uid="501" st_gid="20" st_size="8943004" st_nlink="1"
st_mtime="1323101051" st_ctime="1323168268" st_atime="1324470592"/>

Listing 1: FSML file element with file attributes

When the database is mounted as a filesystem at a later point, those attributes are
used to provide file status information to the operating system kernel (as, for instance,
necessary to process the stat(2) system call).

2.2 Leverage Tacit Information Hidden in Files

Another view at Figure 2.2 on the facing page reveals that content and inherent meta-
data of files is taken into account and explicitly represented in the BaseX-FS database
instance. Our mapping breaks with the long tradition to consider files as just a sequence
of bytes. A central point of the integration of contents into the XML representation of
the filesystem is to allow the full range of XQuery retrieval features on the data. While
XML files are ready to be included without additional effort (unless schema validation is
demanded), commonly used binary files, such as images or audio files, contain metadata,
which is quite relevant for querying.

Our basic approach is that any information is considered an asset of interest that may, at
a later point, be useful for information retrieval, personal information management, or
related tasks. Assets of interest are to be defined for file types, e.g., audio files, e-mails,
pictures, etc. and typically belong to one of the four categories:

• Inherent file metadata (encapsulated within the file, e.g., ID3 information for music
data, EXIF annotations for image files)

• System metadata (filename, file size, modification times, …)
• File content (full-text contained in office documents, e-mails etc.)

29

www.manaraa.com

2 The BaseX Filesystem View

• User annotations, like tags, etc.

Often, a number of different assets of interest exist for a given file. Those are bundled
together and form what we call a metadata entry (MDE). A metadata entry is the XML
encoded view of a file and is suited well for querying. Together with the original regular
file in the backing store it forms the database view of a file.

2.2.1 Transducers – Filetype-specific Data Extractors

Metadata entries are constructed by so-called transducers (which first appeared in the
context of the Semantic File System [17]). Transducers are file-specific metadata ex-
tractors. Transducers exist for various file types and can be plugged into the system
to expose file-specific metadata. An extensible and configurable architecture has been
chosen for the implementation of transducers to

• facilitate the support for new filetypes
• enable developers and organizations to produce metadata entries that contain ex-

actly the (meta)data of files they want to query. BaseX-FS provides the framework
in which transducers can feed metadata entries in order to build user-defined views
of the filesystem in XML

Transducers are triggered by the detected file MIME type. Transducer plugins can reg-
ister for various MIME types and will be invoked once a file of that type is processed.

The detected metadata is added as separate XML documents to the database and the
file hierarchy mapping is augmented by a reference to the metadata entry.

Listing 2 on the next page is an example of what is stored in the native XML database.
A transducer for audio files has detected some ID3 information and the <file> element
is augmented with file attributes taken from the operating system.

30

www.manaraa.com

2.2 Leverage Tacit Information Hidden in Files

<!-- File Hierarchy encoded in FSML (fsml.xml) -->
<fsml version="1.0">…

<dir name="Music" st_size="…">
<file name="05_Like_A_Rolling_Stone.mp3" suffix="…">

<metadata transducer="exiftool" db-size="10144" db-nodes="73"
db-name="fsml-522dd6df-169d-4edf-aaf3-e2396e18dfab"
db-timestamp="16.01.2012 10:57:48"
doc-size="2499 Bytes" doc-encoding="UTF-8"
whitespace-chopping="true"/>

</file>
</dir>…

</fsml>

<!-- for $metadata in doc("fsml")//file/metadata/@db-name
return doc($metadata) -->

<metadata transducer-toolkit="Image::ExifTool 8.68"
xmlns:MPEG="http://ns.exiftool.ca/MPEG/MPEG/1.0/"
xmlns:ID3v2_3="http://ns.exiftool.ca/ID3/ID3v2_3/1.0/"
xmlns:Composite="http://ns.exiftool.ca/Composite/1.0/">

<MPEG:MPEGAudioVersion>1</MPEG:MPEGAudioVersion>
<MPEG:AudioLayer>3</MPEG:AudioLayer>
<MPEG:AudioBitrate>192 kbps</MPEG:AudioBitrate>
<MPEG:SampleRate>44100</MPEG:SampleRate>
<MPEG:ChannelMode>Stereo</MPEG:ChannelMode>
<MPEG:MSStereo>Off</MPEG:MSStereo>
<MPEG:IntensityStereo>Off</MPEG:IntensityStereo>
<MPEG:CopyrightFlag>False</MPEG:CopyrightFlag>
<MPEG:OriginalMedia>False</MPEG:OriginalMedia>
<MPEG:Emphasis>None</MPEG:Emphasis>
<ID3v2_3:Title>Like A Rolling Stone</ID3v2_3:Title>
<ID3v2_3:Artist>Bob Dylan</ID3v2_3:Artist>
<ID3v2_3:Composer>Bob Dylan</ID3v2_3:Composer>
<ID3v2_3:Album>Greatest Hits</ID3v2_3:Album>
<ID3v2_3:Track>5/10</ID3v2_3:Track>
<ID3v2_3:PartOfSet>1/1</ID3v2_3:PartOfSet>
<ID3v2_3:Year>1965</ID3v2_3:Year>
<ID3v2_3:Genre>Folk</ID3v2_3:Genre>
<ID3v2_3:Comment>(iTunPGAP) 0</ID3v2_3:Comment>
<ID3v2_3:EncodedBy>iTunes 8.0.2</ID3v2_3:EncodedBy>
<ID3v2_3:Comment>(iTunNORM) 00 … 00042A05</ID3v2_3:Comment>
<ID3v2_3:Comment>(iTunSMPB) 00 … 000000</ID3v2_3:Comment>
<ID3v2_3:Comment>(iTunes_CDDB_IDs) 10 … 750289</ID3v2_3:Comment>
<Composite:DateTimeOriginal>1965</Composite:DateTimeOriginal>
<Composite:Duration>0:06:12 (approx)</Composite:Duration>

</metadata>

Listing 2: Metadata extracted for .mp3 file using ExifTool transducer
31

www.manaraa.com

2 The BaseX Filesystem View

Transducers externalize data formerly siloed in filesystems. The extraction of tacit
information, encapsulated in various file formats, leads to a standardized and easily
accessible representation. Content and structure of file data is exposed and can now
be queried together, as the extracted data is presented in a homogeneous manner. The
data is indexed and we can search on anything that has been loaded without knowing
questions ahead of time.

Think, for instance, about finding an e-mail with a known sender, a big attachment and
some keywords:

for $mail in //file/Mail
let $attach := $mail/Attachment
where $mail/From = 'jim.walker@mail.com'

and $mail/Section
contains text 'Hansson' ftand 'report'

and $attach/@size > 3000000
return fsml:path($mail)

Listing 3: XQuery pseudo-code to retrieve relevant e-mails

Queries may combine filesystem metadata (such as file size, directory names) with file
content and use both filesystem commands and languages for semi-structured data, such
as XQuery, to request and manipulate data. In the case of e-mails, comparable func-
tionality is already offered by advanced e-mail applications. However, each application
has to provide its own implementation, leading to highly redundant code for similar
functionality. Our approach strives to provide such capabilities as a basic system ser-
vice. Furthermore, the search is not restricted to application-defined communication
paths (such as the often connected e-mail, calendar, address book applications), but can
include any stored data.

2.2.2 Implementation of a Transducer

Several sophisticated tools in the open-source domain focus on metadata extraction.
ExifTool [30] is a good example. It is in operation and under constant development
since 2003 and supports an astonishing amount of more than 130 file types. Following
established software engineering practice we want to put those tools to use for our goal

32

www.manaraa.com

2.3 A Deeper Filesystem – The Metadata Hierarchy

to externalize information in a homogeneous manner.

A plugin architecture has been chosen for that purpose.

While it can be quite difficult to write extraction code to get information from raw data,
it is easy to deploy a new transducer and to integrate it into our architecture, as it boils
down in supporting a simple interface:

• register(list of mime types supported by transducer)
• <metadata/> extract(fileref)
• inject(fileref, <updates/>)

The implementation has to be thread-safe, the functions are called back by the system
when appropriate. Plugins are initially loaded into the BaseX-FS Database Server on
startup. They may be provided as external dynamic libraries or included into the project
code. Additional plugins can be loaded and removed from the server during runtime.
If multiple transducers are registered for the same MIME type, they are executed in
sequence.

2.3 A Deeper Filesystem – The Metadata Hierarchy

Back in 1998 Simon St. Laurent published a short essay [61] that contained the following
Figure 2.3:

Figure 2.3: Simon St. Laurent’s vision of an enhanced, “deeper” filesystem

St. Laurent writes: “Implementing this requires a drastic rethinking of the file system

33

www.manaraa.com

2 The BaseX Filesystem View

and database structures as well. Supporting retrieval at the element level breaks down
formerly monolithic binary files (or, in database terms, Binary Large Objects or BLOBs)
into separate, often tiny chunks which may themselves continue other chunks, which
contain other chunks, and so forth. At this point, the file system is no longer a file
system in the traditional sense, but an object store which is capable of storing large
chunks of information as well as hierarchies built of tiny data sets. The document still
exists - but only as one layer of the object store, an object containing other objects much
as directories contain files at present.” [61]

We were excited about the idea of letting the filesystem immerse into files to have an
enhanced, deeper, and more fine-grained access to data. And given a BaseX-FS instance,
other—more specific or application-tailored—views on a filesystem can be created easily.
We came up with another XML representation, called DeepFS, that integrates selected
items of metadata entries into the file hierarchy.

Beside the well-known file and directory hierarchy, DeepFS establishes a second metadata
hierarchy. Assets of interest are structured in <fact/> and <folder/> elements. Facts
are leaf nodes in the metadata hierarchy and contain values, such as ’Bob Dylan’ in an
’artist’ fact of an audio file or the full-text of a PDF in the ’page’ fact.

Folders recursively contain, analogous to directories, zero or more facts or folders. They,
for instance, group the individual page facts of a PDF document to a pages folder. An
example is given in Listing 4 on the next page.

$ tree -a /var/tmp/mnt/
/var/tmp/mnt/
|-- a.mp3
`-- .a.mp3.deepfs

|-- artist
|-- sub
| `-- genre
`-- title

2 directories , 4 files

Facts and folders form the metadata hierarchy that
is exposed in the Unix filesystem namespace. Per
convention, a known file type is expected to ex-
pose its metadata in a folder with an annotation of
type="metadata". It denotes the root of the meta-
data hierarchy along which deep access to the reg-
ular file is established. DeepFS prolongs the con-
ventional file hierarchy with a metadata hierarchy.
When mounting the database as filesystem this meta-
data hierarchy is reflected in the filesystem name-
space again in order to navigate into the file.

34

www.manaraa.com

2.3 A Deeper Filesystem – The Metadata Hierarchy

<dir name="Documents" st_mode="040755" ...="...">
<file name="BBC_News-Mars_Nasa_images.pdf" suffix="pdf" ... >

<folder name=".BBC_News-Mars_Nasa_images.pdf.deepfs" type="metadata">
<fact name="pagecount">2</fact>
<fact name="title">Mars: Nasa images show signs of flowing water</fact>
<fact name="author">Hamish Pritchard (Science Reporter)</fact>
<fact name="subject">Science & Environment</fact>
<fact name="keywords"/>
<fact name="creator">Google Chrome</fact>
<fact name="producer">Mac OS X 10.6.8 Quartz PDFContext</fact>
<fact name="creationdate">2011-08-10T15:11:03.000Z</fact>
<fact name="modificationdate">2011-08-10T15:11:03.000Z</fact>
<folder name="pages">

<fact name="page" number="1">SCIENCE & ENVIRONMENT
4 August 2011 Last updated at 18:11 GMT
Mars: Nasa images show signs of flowing water

Striking new images from the mountains of Mars may be
the best evidence yet of flowing, liquid water, an essential
ingredient for life. The findings, reported today in the journal
Science, come from a joint US-Swiss study. ...

</fact>
<fact name="page" number="2">Salty water ...

Listing 4: DeepFS with facts and folder elements that establish a metadata hierarchy.
Navigation into the file along the metadata hierarchy can be achieved once the database
is mounted as a filesystem

Folders naturally appear as regular directories with the access rights of the original
file inherited. The root folder of the metadata hierarchy is a hidden Unix directory
(dot notation) and named after the corresponding file name suffixed with .deepfs.
Facts show up as regular files and can be treated as such, i.e., a write to a “file” in the
metadata hierarchy translates into an update of its <fact/> element. To go through with
the concept of a deeper filesystem, updates of facts in the DeepFS view propagate back
into the original files. For that purpose we introduced the concept of bi-directional
transducers.

Pushing metadata updates back into files. As indicated by the inject(fileref,
<update/>) function, we, in contrast to existing metadata harvesters, allow users and
applications to actually work on the extracted data. This means, while Desktop Search

35

www.manaraa.com

2 The BaseX Filesystem View

Engines or application-specific indexes collect metadata in order to provide search func-
tionality and lock away the metadata otherwise, we maintain a strong relationship be-
tween the XML view and the original data file. Whenever the file is updated, its redun-
dant, externalized XML representation is updated as well. The same holds vice versa:
if a metadata entry is updated by a database query those changes are propagated back
into the original file.

Since the original, raw file is kept in a backing store, the homogeneous representation
comes with the cost of storing data redundantly: The original metadata in the file and
its counterpart in the XML representation.

2.4 Related Work

Various ideas have been proposed for including file contents into information systems.

One of the earliest attempts, the Semantic File System (SFS) [17], extracted attribute-
value pairs for specific file types via so-called transducers. Content queries could be
formulated by entering directory paths and extending them with AND combined query
terms. The result was a virtual path, resembling a default directory path and including
symbolic links to the result documents. While SFS offered only limited retrieval func-
tionality and ways of representing the query results, it has influenced numerous future
filesystem projects, including Shore [11], HAC [19].

An interesting approach to bring XML and filesystems together was presented by IBM’s
XMLFS [3]. The underlying prototype implementation offered access to XML documents
via an NFS server, and a simple path language allowed querying tags and text nodes
across several documents. Nevertheless, the project was not extended to a full XPath/X-
Query support, and document storage was apparently limited to XML instances and to
the existence of DTDs.

The visionary paper “From databases to dataspaces: a new abstraction for information
management” [16] proposes dataspaces as a new data management abstraction. It led to
various promising research efforts regarding the development of software platforms to fa-
cilitate a heterogeneous and distributed mix of personal information, such as Semex [10].
Approaches like this are far more prospective and target the development of so-called

36

www.manaraa.com

2.5 In a Nutshell

DataSpace Support Platforms (DSSPs). These are supposed to meet the criteria defined
in “Principles of dataspace systems” [29].

IBM’s Virtual XML Garden [55] and the draft of File System XML (FSX) [68] share the
common idea to have a unified view over heterogeneous data sources. Since filesystems
are structured hierarchically, they can easily be mapped to an XML structure as sketched
in [68]. Together with the idea to let the filesystem immerse into the file [61], these provide
the basis for the construction of our representations.

An extensive discussion focused on semantic technologies to the problem of personal
information management is to be found in [56, Chapter 2].

2.5 In a Nutshell

mkfs.basexfs(1) takes an existing file hierarchy as input and creates a BaseX-FS data-
base instance. This bulk loading operation serves well as a short summary of the points
discussed so far. A depth-first preorder tree traversal, starting from the topmost direc-
tory, is performed in order to produces a unified representation of the file hierarchy.

While traversing the file hierarchy, each file is visited and analyzed. The following
operations take place:

• Encountered files are represented as XML elements in the FSML database. They
are augmented with operating system specific metadata attributes, such as file
access time, file size, file protection mode and the like. This is done for all file
types, incl. regular files, directories, links, etc. When, at a later date, mounting
the database as filesystem, those attributes are used to obtain information about
the file.

• File-type specific metadata (such as EXIF information for images, ID3 data for
audio files, …) is stored in separate databases using an XML representation con-
structed by transducers.

• File-type specific content, such as the full-text of a PDF file, or an e-mail message,
is included as well. The transducers are responsible for deciding what assets of
interest should be represented.

37

www.manaraa.com

2 The BaseX Filesystem View

• The original data file is copied to the binary backing store of BaseX and a unique
reference is added to the corresponding file element (<file bsid='uuid'>).

• XML files are treated the same way. Metadata about the document is added to
FSML, i.e., statistics about the document (how many nodes, how many elements of
a specific tagname, etc.). The document itself is shredded into the database. This
holds for any well-formed XML instance. In the case of an incorrect, corrupt XML
document, the document is put into the backing store and the FSML metadata
entry contains information about the problem.

We created a suitable format to store and operate on filesystem data using a DBMS.
While being straight-forward, it adds semantics and exposes formerly hidden contents of
files with both, its structure and values. The approach allows to leverage all components
(storage, indexes, query capabilities) of an XML-DBMS. XML processing languages,
such as XPath and XQuery, allow for unprecedented search capabilities and flexibility
on the data. Conventional approaches using full-text engines can only perform full-text
queries, using proprietary syntax. With XQuery and its Full-Text extension we can
easily combine full-text search criteria and queries based on values of any XML element
or attribute.

In the next chapter, we will explore the integration of BaseX-FS instances to Unix operat-
ing systems in order to build filesystems on top of the unified XML representation. Since
the database will be mounted as a conventional filesystem by the operating system ker-
nel, access via the established (virtual) filesystem interface as well as database-enhanced
access to the same data will be provided.

38

www.manaraa.com

3 An XML Database as Filesystem

Given an instance of a BaseX-FS database, and given the database is connected to the
operating system, metadata of files normally only accessible with dedicated tools, can
now be represented as regular files and directories.

Applications completely unaware of the database can utilize the Unix filesystem interface
to gain access to the uniformly stored file data in the DBMS. The database is mounted
as a filesystem, and its data appear in the filesystem namespace. The database becomes
the filesystem and the filesystem is the database.

Establishing a link between database management system and operating system kernel
is crucial to achieve our ultimate goal: Provide both proven and stable access to the
data leveraging filesystem techniques for database-unaware applications and enhanced,
declarative access (including query support) to all stored files for database-aware appli-
cations.

Via the Unix filesystem interface we can provide:

• Conventional file I/O to all files in the FS/DB Server (legacy interface)
• Access to the formerly locked-in metadata of files via a proven and well-known

interface (metadata-aware filesystem)
• Manipulation of database content in a BaseX-FS instance, using any tool capable

of reading and writing files (file I/O to database)

39

www.manaraa.com

3 An XML Database as Filesystem

J DB/FS S

Declarative (Query)
Access

Conventional
File I/O

Metadata-aware
File Access

DB-aware applications
(Database Road)

DB-unaware applications
(Filesystem Trail)

XML
STORAGE

Applications
Users

Developers

XML databaseUnix filesystem

 Binary
Backing

Store

Figure 3.1: Ultimate goal: Database-enhanced (“Database Road”) and conventional ac-
cess (“Filesystem Trail”) to filesystem data

3.1 On Filesystem Prototyping

Developing a filesystem from scratch is reported to be difficult and error-prone [71], [52].
Rajgarhia et al. from Stanford University summarize it as follows:

“Developing in-kernel file systems for Unix is a challenging task, due to a variety of rea-
sons. This approach requires the programmer to understand and deal with complicated
kernel code and data structures, making new code prone to bugs caused by programming
errors. Moreover, there is a steep learning curve for doing kernel development due to the
lack of facilities that are available to application programmers. For instance, the kernel
code lacks memory protection, requires careful use of synchronization primitives, can be
written only in C, and that too without being linked against the standard C library.
Debugging kernel code is also tedious, and errors can require rebooting the system. Even
a fully functional in-kernel file system has several disadvantages. Porting a file system
written for a particular flavor of Unix to a different one can require significant changes
in the design and implementation of the file system, even though the use of similar file
system interfaces (such as the VFS layer) on several Unix-like systems makes the task

40

www.manaraa.com

3.1 On Filesystem Prototyping

somewhat easier. Besides, an in-kernel file system can be mounted only with superuser
privileges. This can be a hindrance for file system development and usage on centrally
administered machines, such as those in universities and corporations.” [52]

At least two approaches strive to overcome this burden and provide frameworks suitable
to rapidly prototype new filesystem concepts and ideas:

• Stackable Filesystems (paired with the FiST framework)
• Filesystem in USErspace (FUSE) approach

3.1.1 Stackable Filesystems

Stackable filesystems offer a way to add new functionality to existing filesystems without
modifying kernel or existing filesystem code.

The basic idea of stacking can be summarized as follows: Most operating systems sepa-
rate their filesystem code in two components, a native filesystem and a general-purpose
layer, the Virtual File System (VFS). The VFS provides a uniform access mechanism
to filesystems at a higher abstraction level and is unaware of the underlying filesystems’
details. When filesystems are initialized in the kernel, a set of function pointers is in-
stalled in the VFS. The VFS, in turn, generically calls these pointer functions without
knowing which specific filesystem the pointers represent.

For example, an unlink system call gets translated into a service routine sys_unlink.
It invokes the VFS function (vfs_unlink), which in turn invokes the filesystem specific
method by using its installed function pointer: ext4_unlink for ext4, nfs_unlink for
NFS or the appropriate function for other filesystems.

This allows yet another filesystem to be inserted right between the existing VFS and
base filesystem. Figure 3.2 shows such an inserted filesystem (CryptFS). It is called
stackable, because it is stacked on top of another, the underlying filesystem.

If the stackable filesystem approach is applied, new functionality is layered on top of
existing filesystems. Before the lower-level filesystem is called, a stackable filesystem can
modify an operation and/or its arguments, and perform arbitrary operations before, after
or instead of the underlying filesystems actions. Thereby, the underlying filesystem could

41

www.manaraa.com

3 An XML Database as Filesystem

user process

userspace

kernel

Virtual
Filesystem (VFS)

CryptFS

write()

vfs_write()

cryptfs_write()

ext4fs_write()

ext4

Figure 3.2: Information and execution flow in a stackable filesystem

be any other filesystem (Ext4, NFS, another stackable FS). The features implemented
in the stackable filesystem are separate from the filesystem module, thus a stackable
filesystem allows for portability to different environments.

The File-System Translator (FiST) [69] is a high-level language developed by Erez Zadok
from Stony Brook University to describe stackable filesystem. If a FiST description is
taken as input, a dedicated compiler can generate kernel filesystem modules for different
platforms.

Erez Zadok and Jason Nieh explain in [70] why they consider using FiST a good choice
to prototype new filesystems using the stackable filesystem approach:

“To ease the problems of developing and porting stackable file systems that perform
well, we propose a high-level language to describe such file systems. There are three
benefits to using a language:

1. Simplicity: A file system language can provide familiar higher-level primitives that
simplify file system development. The language can also define suitable defaults auto-
matically. These reduce the amount of code that developers need to write, and lessen
their need for extensive knowledge of kernel internals, allowing even non-experts to de-
velop file systems. 2. Portability: A language can describe file systems using an interface
abstraction that is common to operating systems. The language compiler can bridge the
gaps among different systems’ interfaces. From a single description of a file system,
we could generate file system code for different platforms. This improves portability

42

www.manaraa.com

3.1 On Filesystem Prototyping

considerably. At the same time, however, the language should allow developers to take
advantage of system-specific features. 3. Specialization: A language allows developers
to customize the file system to their needs. Instead of having one large and complex file
system with many features that may be configured and turned on or off, the compiler can
produce special-purpose file systems. This improves performance and memory footprint
because specialized file systems include only necessary code.”

The “Anti-Virus File System (AVFS)” [49] implemented by Zadok et al. perfectly conveys
an idea of what can be achieved using stackable filesystems. Figure 3.3 shows the main
components and interactions of AVFS.

user process

userspace

kernel

Virtual
Filesystem (VFS)

AVFS

read()

vfs_read()

avfs_read()

ext4fs_read()

ext4

Oyster

scanbuf

Virus
Database

Figure 3.3: The Anti-Virus Stackable Filesystem [49]

AVFS is a stackable filesystem that provides protection against viruses. AVFS—as a
stackable filesystem—is mounted over an existing filesystem, thus providing a bridge
between VFS and the underlying filesystem. The VFS calls various AVFS operations,
and AVFS in turn calls the corresponding operations of the underlying filesystem. AVFS
performs virus scanning and state updates during these operations. Analogous to the
explanation in the previous section, a user process that wants to do a read calls the
VFS layer’s vfs_read as usual (through, for example, glibc). The VFS calls AVFS
(avfs_read) instead of directly addressing the “real” filesystem. AVFS performs scan-
ning and calls an arbitrary filesystem (for example ext3_read). Throughout the process,
a page is the fundamental data unit. Within AVFS, a modified and enhanced version of
the open-source virus scan engine ClamAV (now called Oyster) is used. The filesystem
has become “a page-based on-access virus scanner that scans in real time as opposed to
conventional scanners that operate during open and close operations.” [49]

43

www.manaraa.com

3 An XML Database as Filesystem

3.1.2 Filesystem in Userspace

In recent years, the Filesystem in Userspace framework (Fuse), has entered the world
of filesystem development.

Fuse is a framework for implementing filesystems outside the operating system kernel
in a separate protection domain as a user process.

It was first implemented for and integrated into the Linux kernel [62]. There are reim-
plementations for the Mac OS X [58], FreeBSD, and NetBSD [40, 41] kernels.

The FUSE Framework

Userspace filesystems operate by connecting an in-kernel filesystem module to the virtual
filesystem layer. This kernel component has a counterpart in userspace. The kernel part
picks up VFS requests and transforms them to be suitable for delivery to userspace.
After sending the request to userspace, the module waits for a response, interprets the
result, and feeds it back to the caller in the kernel.

The Fuse user-level library interface closely resembles the in-kernel virtual filesystem
interface. Function callbacks can be registered by the user-level implementations, which
get executed once a corresponding request is issued by the OS kernel (Table 3.1).

A Fuse kernel module and the Fuse library communicate via a special file descriptor:
/dev/fuse. This file can be opened multiple times, and the obtained file descriptor is
passed to the mount system call, to match up the descriptor with the mounted filesys-
tem.

Figure 3.4 on the next page depicts the Fuse framework and illustrates request handling
of a filesystem call (e.g., stat(2)) during the execution of an ls(1) command.

Filesystem operations

A Fuse implementation is a program listening on a socket /dev/fuse for operations
to perform. The Fuse library (libfuse) transparently communicates with the socket

44

www.manaraa.com

3.1 On Filesystem Prototyping

libc

libfuse

myfs_impl

ls -l /mnt/myfs

userspace

kernel

VFS

FUSE.ko

NFS

ext4

...

libc

Figure 3.4: The Fuse framework. Fuse kernel module (.ko), libfuse user library and
an implementation (myfs_impl). Request handling of a filesystem call (e.g.,
stat(2)) during the execution of an ls(1) command. (Figure redrawn from
the Fuse project documentation at http://fuse.sourceforge.net/)

and provides a callback mechanism to the filesystem developer. The callbacks (request
handlers) are a set of functions for file operations. Table 3.1 provides an overview of
the request handlers (file operations, callbacks) to give an impression of what can be
achieved by a high-level Fuse implementation.

The FUSE APIs

Most Fuse request handlers work very similarly to the well known Unix filesystem
operations and system calls. Fuse provides two basic APIs for developers to implement
filesystems: A low-level and a high-level API. If the low-level API is used, almost all
operations take an inode as first argument to identify the object the operation should
work upon, while the high-level interface uses path names.

In principle, both interfaces could be used for our purpose. The low-level interface could
connect inodes with database IDs of XML nodes. The high-level interface, however, is
recommended by the Fuse developer community. It generally performs better because

45

http://fuse.sourceforge.net/

www.manaraa.com

3 An XML Database as Filesystem

Request handler Short Description
getattr() Get file attributes
readlink() Read the target of a symbolic link
mknod() Create a file node
mkdir() Create a directory
unlink() Remove a file
rmdir() Remove a directory
symlink() Create a symbolic link
rename() Rename a file
link() Create a hard link to a file
chmod() Change the permission bits of a file
chown() Change the owner and group of a file
truncate() Change the size of a file
open() File open operation
read() Read data from an open file
write() Write data to an open file
statfs() Get file system statistics
flush() Possibly flush cached data
release() Release an open file
fsync() Synchronize file contents
setxattr() Set extended attributes
getxattr() Get extended attributes
listxattr() List extended attributes
removexattr() Remove extended attributes
opendir() Open directory
readdir() Read directory
releasedir() Release directory
fsyncdir() Synchronize directory contents
init() Initialize filesystem
destroy() Clean up filesystem
access() Check file access permissions
create() Create and open a file
ftruncate() Change the size of an open file
fgetattr() Get attributes from an open file
lock() Perform POSIX file locking operation
utimens() Change the access and modification times of a file
bmap() Map block index within file to block index within device
ioctl() Manipulate the underlying device parameters of special files
poll() Poll for IO readiness events

Table 3.1: Fuse request handlers a high-level implementation can choose to register for

46

www.manaraa.com

3.1 On Filesystem Prototyping

several system calls are grouped to form a single filesystem call. In our case an additional,
even more compelling reason is of importance: path names play an important role. And
path-based navigation in filesystems and navigation in XML documents have quite a lot
in common. For XML, path expressions are the core construct of XPath; they represent
a fundamental part of XQuery. For filesystems, path names are—since their introduction
in the Pdp-11 system—the natural way to address files.

In both worlds, paths consist of a sequence of steps, which are syntactically separated by
slashes (’/’): s0/s1/. . ./sn. Each step s1 . . . sn operates on the result of its previous step
si−1. Depending on the type of the path (absolute or relative), the origin for the first
step s0 differs. For absolute paths it is the topmost directory and the topmost node of
an XML document, respectively. In the relative case it is the current working directory
and the current context sequence (cs).

Absolute path names are notated with a leading ’/’. A special marker for relative path
names may be omitted. However, a relative path name δ0/. . ./δn/f with directory names
(δi) and a device/socket/file (f) is equivalent to ./δ0/. . ./δn/f , where ’.’ denotes the
current working directory.

Given the proposed mapping, filesystem path names (ρfs) naturally translate to path
expressions (ρxq) as shown in 3.2.

path names path expressions
. self::fs:dir
.. parent::fs:dir

δ0/· · ·/δn child::fs:dir[@fs:name="δ0"]/…/child::fs:dir[@fs:name="δn"]
/· · · fsml:fsRoot()/· · ·
· · ·/f · · ·/child::fs::*[@fs:name="f"]

Table 3.2: Filesystem path names to XPath/XQuery path expressions

Choosing FUSE as a prototyping framework

Given an efficient conversion from path names to XPath, its path-based API makes
the Fuse framework a good choice to prototype our new filesystem concept. Apart
from that, it is actively developed, maintained inside the Linux kernel tree and has a

47

www.manaraa.com

3 An XML Database as Filesystem

supporting community. Several Fuse-based filesystems (SSHFS [63], NTFS-3G [65],
GlusterFS [18]) have already proven that Fuse is able to power non-trivial filesystems
in real-world scenarios.

The obvious drawbacks stem from the performance overhead user-level filesystems have
to encounter due to their nature. Fuse introduces two context switches for each filesys-
tem call. There is a context switch from the user application that issued the system
call to the Fuse user space library, and another one in the opposite direction. This
and further aspects—splitting read and write requests into chunks and further memory
copies—are discussed in [52, Section 3].

The stackable filesystem approach.

If we, at a later date, decide to push the filesystem further down the system stack,
the stackable approach may become more important again, as it is closer to a “real”
filesystem. Under the term “Breaking database technology out-of-the-box”, one could
think about isolating the relevant techniques to implement a storage layer that suits
both, filesystem and database demands. A numbering scheme, inspired by the XPath
accelerator (such as pre/dist/size), could be used as a basis for a filesystem implementa-
tion. Interlinking database node IDs with filesystem vnodes may be an approach worth
further investigations. The general idea would be a storage that is tuned for filesystem
access, but able to serve as a storage layer to the database as well. This could finally
lead to an implementation of an in-kernel filesystem that is capable of interacting with
a DBMS in userspace.

48

www.manaraa.com

3.2 Mounting the Database as a Filesystem

3.2 Mounting the Database as a Filesystem

3.2.1 System Architecture

The joint storage of BaseX-FS is capable of delivering any information needed to model
and run a filesystem [32, 33]. The database server handles requests of multiple clients
and manages concurrent read and write operations. Fuse, on the other hand, allows any
implementation to organize the data the way it likes. The virtual filesystem operations
initiated by applications are looped back into userspace and captured by the functions
registered with the callback interface of the Fuse user-level library. BaseX-FS translates
kernel requests into equivalent database queries. It comes in handy that the high-level
interface of Fuse is path-based as those requests naturally translate into efficient XPath
operations.

Figure 3.5 illustrates the system architecture and shows how the Fuse framework is
used to connect the database system to the OS kernel.

Session Handler
XQuery Compiler

DB Kernel

BaseX DB/FS Server

userspace

kernel

VFS
FUSE.ko

ext4

libfuse

BaseX API

BaseX-FS
FUSE Module

FSOps to
XQuery/XQUF

.news.pdf.deepfs
|-- author
|-- pages
| `-- page.txt
`-- subject

home
|-- Images
|-- Documents
| `-- news.pdf
`-- Music

Legacy file access Metadata-aware file access

DB-unaware applications
(Filesystem Trail)

cat .news.pdf.deepfs/authorcat ~/Music/song.mp3

deep access

libc

Joint DB/FS Storage

Figure 3.5: System architecture to mount the database as conventional filesystem into
the operating system

49

www.manaraa.com

3 An XML Database as Filesystem

For database-unaware applications, conventional as well as metadata-aware file access
is achieved. The BaseX-FS Fuse code communicates as a client with a running server,
leveraging the internal API of BaseX for optimal performance [31].

The filesystem, from this point of view, is yet another database client.

Apart from the necessary code to glue the database, Fuse and the kernel together, it
turns out that the main logic is implemented in XQuery, feeding the kernel with data
taken from the database.

The general workflow for all file operations is depicted in Figure 3.6 and can be summa-
rized as follows:

• Kernel requests information about path_name
• BaseX-FS Fuse module dispatches kernel request to database (XQuery)
• Relevant information is retrieved from database (XML)
• Response is sent to kernel

KERNEL
request

response

BX-FS

BX-FS
XQuery

XML

KERNEL

BX

FUSE

FUSE

Figure 3.6: Kernel - Fuse - BaseX-FS communication. Logic in XQuery

3.2.2 Implementation Details

Fuse supports a variety of Unix systems. While libfuse already provides a good
abstraction layer, it still has some system-specific elements. To further reduce native
dependencies, we made the decision to split BaseX-FS into two parts: A thin, native low-
level layer that is implemented against libfuse and a platform-independent high-level
part interfacing with the database.

50

www.manaraa.com

3.2 Mounting the Database as a Filesystem

The low-level part compiles to a platform-specific shared library libbasexfs and is
dynamically loaded by its high-level counterpart. Figure 3.7 illustrates the architecture.
Since BaseX is a pure Java-based database system, the native libbasexfs uses Java
Native Interface (JNI) for bi-directional communication with its platform-neutral part.
In this way, the following three objectives could be realized:

1. The platform-specific code is reduced to a minimum
2. The “natural” Java-based BaseX API can be used for optimal performance
3. An arbitrary XML database can be connected to the native part, provided that it

offers the system prerequisites described in Chapter 2.

loads

FUSE

BaseX-FS neutral

BaseX-FS native

JNI

libbasexfs

BaseX API

Local Session

BX

pl
at

fo
rm

 i
nd

ep
en

de
nt

na
ti

ve
 c

od
e

db client

Figure 3.7: Implementing an XML database as filesystem in userspace. Fuse acts as a
database client

51

www.manaraa.com

3 An XML Database as Filesystem

Get file attributes (stat ← fuse_getattr(path)).

As an example for all other request handlers, we describe the implementation of one
central filesystem operation. In a running filesystem, various attributes of files—so-
called file metadata—are of central interest. That information about a file, including file
timestamps, file ownership, and file permissions, is typically retrieved by the stat(2)
family of system calls:

/* return information about named file */
int stat(const char *path, struct stat *buf);
/* return information about file refered to by an open file descriptor */
int fstat(int fd, struct stat *buf);
/* similar to stat(), except that if the named file is a symbolic link,
* information about the link itself is returned */

int lstat(const char *path, struct stat *buf);

Listing 5: Retrieve file attributes. stat(2) family of system calls

To a large extent, the attributes are derived from the file inode and returned in a C
stat structure, which contains the fields as depicted in Listing 6. The various data types
used to type the fields are specified in the Single UNIX Specification [35]. Some of them
are irrelevant for the implementation of a Fuse filesystem; for instance, st_dev and
st_blocksize are ignored.

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* inode number */
mode_t st_mode; /* protection */
nlink_t st_nlink; /* number of hard links */
uid_t st_uid; /* user ID of owner */
gid_t st_gid; /* group ID of owner */
dev_t st_rdev; /* device ID (if special file) */
off_t st_size; /* total size, in bytes */
blksize_t st_blksize; /* blocksize for file system I/O */
blkcnt_t st_blocks; /* number of 512B blocks allocated */
time_t st_atime; /* time of last access */
time_t st_mtime; /* time of last modification */
time_t st_ctime; /* time of last status change */

};

Listing 6: File attributes. Fields of a stat structure

52

www.manaraa.com

3.2 Mounting the Database as a Filesystem

The request handler of Fuse, called getattr(), is similar to the stat(2) system call.
It obtains information on the file pointed to by path:

int (*getattr) (const char *path, struct stat *stat_buffer);

Listing 7: Fuse operation to get file attributes

In our implementation the getattr/stat filesystem call is sent through the JNI bridge
to BaseX. The native path name is converted to a corresponding XPath expression,
and finally evaluated by the database. An XML fragment is returned that contains the
requested information:

<dir st_mode="040755" st_size="2278" st_uid="501" st_gid="20" ...
st_atime="1322218109" st_mtime="1322218081" st_ctime="1322218081"/>

Listing 8: File attributes are returned from the database as XML fragment. The values
are filled into the stat buffer subsequently passed to the OS kernel

Given these details, the general chain of operations can now be stated more precisely:

• Kernel requests information about path_name
• VFS request is looped back into userspace and received by libfuse
• A corresponding request handler, the registered callback operation, is triggered in

the native, low-level part of libbasexfs
• Native libbasexfs part interfaces with its platform-independant, high-level coun-

terpart
• The kernel request is converted to an equivalent database operation (XQuery)
• Relevant information is retrieved from the database (XML)
• Result is transformed into applicable native data structures
• Response is sent back to the kernel

This communication path corresponds to Figure 3.7 on page 51 and illustrates that
BaseX-FS, in a sense, acts as yet another database client.

53

www.manaraa.com

3 An XML Database as Filesystem

3.2.3 Assessment

The substitution of path resolution with XPath resolution on a database instance is cen-
tral to our approach. The Linux Kernel Documentation [44] describes path resolution as
the finding of a dentry corresponding to a path name string, by performing a path walk.
A dentry is an object with a string name (d_name), a pointer to an inode (d_inode),
and a pointer to the parent dentry (d_parent). A filesystem is represented in memory
using dentries and inodes. Typically, for every open(2), stat(2) etc., the path name
will be resolved.

Since it is a frequent operation for workloads like multiuser environments and web
servers, it is important to optimize this code. Next, it is backed by existing kernel
caching techniques. Runtime of the Fuse-based filesystem is also typically dominated
by the costs of getattr (i.e., stat(2)) requests.

To get an impression on how BaseX-FS performs in this regard, we compare it with two
other Fuse-based implementations.

As a baseline, we chose a nullfs implementation using the native C API of Fuse. All
Fuse request handlers are implemented by their corresponding system calls as exem-
plified in Listing 9. That way, an already existing file hierarchy can be exported via a
Fuse mount point again.

int fusefs_access(const char *path, int mask) /* FUSE request handler */
{

int res;

/* path is absolute from mountpoint */
res = access(path, mask); /* system call into ext4 */
if (res == -1)

return -errno;

return 0;
}

Listing 9: Implementation of a nullfs request handler using system calls on the native
filesystem

Consider, for instance, a mounted ext4 filesystem. We additionally mount nullfs on

54

www.manaraa.com

3.2 Mounting the Database as a Filesystem

/mnt/fuse. The actual implementation exports the complete file hierarchy, stored in
the ext4 instance, now delivered and under the control of Fuse again. As such, the
commands ls /home and ls /mnt/fuse/home produce the identical result: Both list
the contents of directory /home, which is physically stored in the ext4 filesystem. The
Fuse implementation acts as an intermediate layer, which uses system calls to retrieve
data from the original ext4 source.

As an upper bound, we chose SSHFS [63] since it can be compared with our implementa-
tion: both filesystems act as clients to a server (sshd(8) and XML-DBMS, respectively).
SSHFS is widely used as a substitute for NFS, serves well for that purpose, and can be
seen as a filesystem of practical use in real-world scenarios. By connecting to the locally
running SSH daemon1 we serve an existing file hierarchy in the same way as nullfs. In
practice, we can expect even slower results, since SSHFS is normally used to mount a
remote resource via untrusted connections.

BaseX-FS uses a DeepFS representation of the existing file hierarchy and exports it back
into the filesystem namespace.

As test data we used the home directory of a work station in our department. It
contains a typical file hierarchy with 30.619 directories, 186.955 files, and 16.312 links.
We performed a recursive traversal of the complete file hierarchy by the invocation
of /usr/bin/time tree [mountpoint]/home >/dev/null. tree(1) is a recursive
directory listing program that produces a depth-indented listing of files on all three
instances. 233.886 files are served by all three implementations, the list of currently
mounted filesystems is depicted in Listing 10, and the respective timings are listed in
Table 3.3 on the next page.

$ mount | grep fuse
fusectl on /sys/fs/fuse/connections type fusectl (rw)
holu@localhost:/home/holu/ on /mnt/sshfs type fuse.sshfs (rw,nosuid,...
fusefs on /mnt/fusefs type fuse.fusefs (rw,nosuid,nodev)
deepfs on /mnt/bxfs type fuse.deepfs (rw,nosuid,nodev)

Listing 10: List of currently mounted Fuse implementations

1$ sshfs user@localhost:/home /mnt/sshfs

55

www.manaraa.com

3 An XML Database as Filesystem

Filesystem Timings (Average of 1000 runs) Difference
nullfs 28, 82ms 100%
basexfs 44, 52ms ∼ 154%
sshfs 110, 11ms ∼ 382%

Table 3.3: Timings of Fuse-based filesystems performing a recursive directory listing

We argue that our implementation is an adequate proof-of-concept and serves well as a
domain-specific filesystem. The argumentation is along the lines of using an encrypted
filesystem. The administrator/user decides and accepts to pay an acceptable perfor-
mance penalty for a more advanced, respectively otherwise missing, functionality.

Metadata-aware file access (“deep access”) surely adds new functionality to filesystems.
It is quite convenient and more efficient to directly find(1) “artist” files and grep(1)
for “Bob Dylan” instead of writing a shell script to find all .mp3 files, pipe them through
an ID3 decoder and analyze the output.

However, while it adds new functionality, it is still just an improvement of a legacy con-
cept. What we really want to achieve is to empower developers to implement database-
aware applications and to use declarative programming on the filesystem data (“Database
Road”).

In the following we will give an insight on how database-aware applications can be
developed based on our architecture. Chapter 4 will afterwards introduce a framework
to enable developers to exploit theses concepts with ease and at a higher abstraction level.
And Chapter 5 will finally present how to implement a non-trivial application, i.e., an
expert retrieval system on top of BaseX-FS and the proposed application framework.

56

www.manaraa.com

3.3 Database-aware Applications

3.3 Database-aware Applications

Nowadays, nearly every application provides its own indexing and retrieval component
for the domain it is responsible for. Even so, the metadata in question has often already
been collected by the desktop search engines, it is not reused. Specialized applications
create their own, proprietary index structures: audio players index audio and video data
in order to display and arrange the media library of a user, and to enable efficient searches
across the media’s metadata. The same holds for personal information management
tools: mail clients index e-mails and their attachments, browsers index bookmarks and
browsing history, photo editing and management software keeps track on image files and
the like.

3.3.1 XQuery your Filesystem

With an FSML database view of the filesystem, numerous inquiries can be supported
that can hardly be achieved with available tools. It can be used by application develop-
ers to reduce code complexity and redundant implementation of similar functionality.
In our scenario, metadata from different sources is exposed in a unified metadata name-
space, and a common interface to access the formerly heterogeneous data is provided.
Application developers can profit from:

• a unified view on the filesystem’s content and metadata
• a standardized and generic way to retrieve the metadata and work with it
• a clear description of what data is available and in what form (transducers provide

a schema definition of the data they extract)
• valid data that can be expected

Retrieval capabilities are not restricted to application-defined communication paths
(such as the often interconnected e-mail, calendar and address book applications), but
can include any data stored in the filesystem.

Transducers externalize information useful for analysis and retrieval that has formerly
been hidden and encapsulated in the filesystem. Content and structure can be queried
together. The extracted data is presented in a homogeneous manner.

57

www.manaraa.com

3 An XML Database as Filesystem

As such, an FSML database view provides a solid foundation to work on filesystem data
with XPath and XQuery, as illustrated by the following examples:

• Compute disk usage of file hierarchy with XPath:

sum(//file/@size)

• Search for a file name:

//file[@name contains text "Rolling Stone"]

• Find all e-mail files in which the e-mail body contains ’A’ and ’B’ within a maxi-
mum distance of five words.

//file[@mime = ’ x-mail ’][.//body

contains text { ’ A ’ , ’ B ’ } distance at most 5 words]

Typically, an XQuery module is used that provides utility functions to work on FSML
instances in the deepfs namespace. For a first impression, we simulate Unix command-
line requests. The task is to compute the disk usage in bytes of images with a resolution
of 240dpi and an aperture of 9. We chain XQuery functions on the analogy of Unix
pipes.

deepfs:du(
deepfs:find(

deepfs:find(//file, "XResolution", "240")
, "FNumber", "9.0"

)
)

Listing 11: Chaining XQuery functions on the analogy of Unix pipes

The following two examples—taken from the domain of personal information manage-
ment—try to give some insight in how both XQuery users and application developers
can benefit from a system-wide metadata repository.

Think, for instance, about the extension of an e-mail application. The task is to create
reports about the e-mail correspondence and to display specific details as it is offered by
various e-mail reporting and analysis tools. The data to be displayed can be retrieved
by a query over the e-mails stored in the filesystem.

58

www.manaraa.com

3.3 Database-aware Applications

Show my most frequent e-mail contacts

“Who is sending the most e-mails?”, such a report can be constructed by the following
query:

1 (: find the most chatty senders throughout all your mails :)
2 for $email in deepfs:mime(//file, "x-mail")
3 let $sender := deepfs:value($email, "From:")
4 group by $sender
5 order by count($email) descending
6 return
7 <collection>{
8 attribute from { $sender },
9 attribute size { count($email) },

10 element latest { $email[count($email)] }
11 }</collection>

Listing 12: XQuery: Who is sending the most e-mails?

For each e-mail found in the database/filesystem, a list of sender e-mail addresses is
maintained (lines 1,2). The e-mails are grouped by their sender, such that each group
contains all e-mails per unique sender (3). Afterwards, the groups are sorted according
to the total number of e-mails contained in each group (4). Finally, a <collection />-
element is returned for each group. It contains information on which sender the mails in
this group originate from, how many mails are in that group, and the most recent mail
that belongs to that group (6-10).

The result is returned as an XML fragment and can instantly be used as a data source
for a graphical user interface (GUI) widget.

Show all e-mails from people that are not listed in my address book

Another report may be generated to help cleaning up overfilling inboxes. In order to
provide a pre-selection of e-mails, the report compares the address book and e-mails to
show all e-mails from people that are not listed in the address book. Those e-mails may
be good candidates for deletion or to add senders to the personal contact list.

59

www.manaraa.com

3 An XML Database as Filesystem

1 let $vCards := deepfs:mime(//file, "vcard"),
2 $friends := distinct-values(deepfs:value($vCards, "email"))
3 (: now find all mails from unknown senders :)
4 return
5 for $mail in deepfs:mime(//file, "x-mail")
6 let $from := deepfs:value($mail, "From:")
7 where not(some $person in $friends satisfies
8 (contains($from, $person)))
9 return $mail

Listing 13: XQuery: Show all e-mails from people not listed in my address book

First, we generate a list of all known e-mail addresses by storing the distinct values for
the email-key of all vCards available in the database (1-3). Then we iterate through
all e-mails (6) and store the sender (7). All e-mails are returned that are sent by an
address that is not in the list of known people (8-10).

Both examples show how to leverage the uniform representation of files in XML. Different
file formats (e-mails, vCards, …) can be addressed in a declarative way, and their content
can be uniformly accessed. The possibility of consistently working on the complete
filesystem content provides the unprecedented opportunity to interrogate and combine
any number of files in a single query.

3.3.2 Visual Access to Large Filesystem Data

Based on the database/filesystem, and with the power of XQuery, it is not only simple
to construct a desktop search engine, but to even go a step further and implement a
desktop query engine. When using common desktop search engines, users expect imme-
diate responses and visual presentation of documents. Since our research is supported
by the German Research Council (DFG) Research Training Group GK-1042 “Explo-
rative Analysis and Visualization of Large Information Spaces” we happily meet those
demands and visually present result sets which allow to instantly access the files stored
in the database. In a selection of screenshots, we want to illustrate how visual access to
filesystem data is implemented in the graphical user interface of BaseX.

From the beginning, BaseX offered an innovative, interactive graphical frontend to vi-
sualize large XML data instances. Apart from the conventional client/server mode and

60

www.manaraa.com

3.3 Database-aware Applications

its command line interface, a graphical frontend, which allows the visual exploration of
XML data, has been part of BaseX since version 1.0 [27].

In an early stage of development, it was realized that the storage structure and parts
of the query algorithms perfectly match for the construction of hierarchic visualiza-
tions [27]. The TreeMap, a space-filling visualization for hierarchic information [39], is a
good example to demonstrate the close relationship.

A simplified algorithm is shown in Figure 3.8:

Figure 3.8: TreeMap algorithm (left), recursive visualization (right)

The algorithm is initially invoked with the root node of the database and the visible
rectangle bounds as arguments. If the node set contains only one node (as is the case
after the first call), the current rectangle is painted to the panel. Next, the algorithm is
recursively called with the child nodes that have been retrieved via an XPath expression.
If several nodes are found in the node set, the current rectangle is split in the middle, a
new orientation (horizontal vs. vertical) is chosen for the child nodes, and the algorithm
is called with the first and second node subset as arguments. If the node set is empty

61

www.manaraa.com

3 An XML Database as Filesystem

or if the calculated area is too small to be painted, the recursive traversal is stopped.

The two XPath expressions in the example code serve as an actual link between the
visualization and the database: data access is realized via simple numeric node references
and node sets, and extra data structures can be largely avoided.

Figure 3.9 shows a TreeMap as one of two views that show results for a specific search
query. The conventional search slot is used to scan an FSML instance for HTML files.
The entered search term is internally converted to a full-text query. Matches are high-
lighted and visualized. On the left hand side, a generic tree view is shown, as known from
website navigation and file explorers. On the right hand side, a TreeMap is depicting
the structure of the file hierarchy in its space-filling visualization.

Figure 3.9: Simple Search Mode. Searching for .htm files. Results are shown and high-
lighted in both views, a generic tree view and the space-filling tree map

The GUI architecture provides various interactive visualizations, so-called views, to be
freely combined in a single window. All views are synchronized and work on the same

62

www.manaraa.com

3.3 Database-aware Applications

data instance. Users get instant result feedback while they visually explore, analyze or
browse the filesystem in order to get a quick overview or to dive into the details.

In Figure 3.10, an XPath expression is used to search through image files. Images are
loaded as thumbnails into the TreeMap, and their metadata is displayed in a separate
view on the lower left side.

Figure 3.10: Using XPath to search through image files

The TreeMap makes extensive use of semantic zooming. In our filesystem context,
semantic zoom is to be looked upon as a form of details-on-demand technique, which
lets users explore different amounts of detail in one view by zooming in and out. The
visualization is closely related with the description of data in the filesystem markup
language, as the “zoom in” operation correlates with “navigating into” a file.

63

www.manaraa.com

3 An XML Database as Filesystem

Figures 3.11 illustrates the concept and shows the extension of the file hierarchy along
the file’s inherent structure. The metadata hierarchy is shown for an audio file, and
both views allow the user to navigate (zoom) into the file.

Figure 3.11: Zooming into the file. The continuation of the file hierarchy along the file’s
inherent structure (“Semantic Zoom”)

With the tight coupling of different query strategies (keyword-based, full-fledged XPath/
XQuery) and the result presentation, we try to establish a query cycle, which allows to
refine, i.e., filter/select/modify the (intermediate) results in a user-system feedback loop.
This allows to start a search with a simple keyword-based query, to browse the resulting
items, and to refine a selected context set by issuing an XQuery.

64

www.manaraa.com

3.4 Considerations

3.4 Considerations

Tailor-made BaseX GUIs are a suitable way to make the database accessible to end users.
They allow for special-purpose visualizations of data and achieve very good performance
results when large databases are to be processed. The approach, however, provides
only limited means to application developers in terms of implementing their own XML
and XQuery-driven applications. The visualizations to graphically work on BaseX-FS
instances have two significant drawbacks:

• The GUI directly operates on the underlying storage and is not capable of handling
multiple users simultaneously

• The visualizations access the low-level APIs of BaseX. On account of this, their
use as a public interface can not be recommended

In general, leveraging BaseX as core infrastructure to implement graphical applications
on top of the current architecture would force developers to fiddle with internal Java-
based APIs. Profound knowledge of the BaseX code base would be a mandatory prereq-
uisite. Given a steep learning curve, accompanied by the dynamic development of BaseX
and the considerable maintenance overhead involved, developers are surely not too keen
to opt in. Consequently, it can be stated that taking the current implementations of
the BaseX GUIs as a blueprint for customized application development application de-
velopment is not advisable.

So, what is it that we are looking for? Once we became aware of the benefits stem-
ming from the declarative access on filesystem data, and once we implemented the first
application prototypes as views inside the BaseX GUI, we thought about a more high-
level and generic way to develop applications based on BaseX-FS instances (or XML in
general).

We strive to provide a framework that simplifies the implementation of graphical applica-
tions with BaseX as a core component. To use of BaseX as a general-purpose application
framework, we have been investigating platform independent ways to benefit from the
BaseX storage and processing capabilities without resorting to internal APIs.

The conceptually most tempting idea was to use XML technologies on all layers of a
three-tier architecture. The benefits are obvious:

65

www.manaraa.com

3 An XML Database as Filesystem

• The storage layer of BaseX provides persistence per se, and XQuery allows us to
perform declarative and domain-specific queries.

• When it comes to business logic, the XML ecosystem unites concepts of functional,
general-purpose programming languages (XQuery and its extensions XQUP, XQFT,
XQSE) with transformations (XSLT). Arbitrary functionality can be implemented
via XQuery modules, ready to be used by developers.

• For the presentational layer, we decided to choose (X)HTML, while developers are
still free to use every other flavor of XML.

With the proposed architecture, database-aware applications will be enabled to leverage
FSML with ease and new applications can be build on the solid foundation of BaseX-FS
and a modern XML database management system.

The following chapter will introduce BaseX-Web, an XQuery application framework, as
a further extension to the BaseX database management system. It will allow database-
supported application development in a clean XML technology stack.

66

www.manaraa.com

4 XQuery Application Framework

XML, XQuery and XHTML are an ideal match to present and process information
resources in a platform neutral way.

In order to facilitate application development in BaseX, we built a service infrastructure
to implement and deploy XQuery-based applications.

PHP
Ruby

…

SQL
NoSQL

XML Database

HTML

XQuery

Persistence

Business Logic

Presentation XHTML

XML

Figure 4.1: Uniform Application Stack:
XML technology on all three
tiers of a system architecture

Since data is natively stored in XML,
XQuery is the standard processing lan-
guage that can be applied to produce
XHTML output with no additional effort.
That way, XML technology is applied on
all three layers of a classical three-tier-
architecture. The persistence layer is pro-
vided by a native XML database man-
agement system, business logic is imple-
mented in XQuery, and the presentation
layer is primarily driven by XHTML. As
such, a single data model is used through-
out the architecture and no conversions
have to be applied between the layers.
By using this “unified technology stack”,
problems such as the object-relational im-
pedance mismatch [37] can be avoided at all. Figure 4.1 illustrates the general idea.

67

www.manaraa.com

4 XQuery Application Framework

4.1 Maturity of Web Applications

Web-based result presentation became the predominant way in both consumer and ex-
pert retrieval systems. The web is full of hosted solutions that provide almost any
information need that might possibly arise. A plethora of machine processable resources
exist, such as RSS feeds, web services via SOAP, or REST. In the same way, numer-
ous websites and applications are available which can be used with any browser—most
prominently Google Search, serving as an everyday retrieval tool at a large scale. Thanks
to the tremendous success of Google,

(a) we are used to start the browser, whenever we search for something, and
(b) we are convinced that it is both feasible and convenient to use web applications as

alternatives to desktop applications.

Applications such as GoogleMail have the look and feel of desktop applications; in terms
of functionality, they even outperform most of their native counterparts, due to the tight
integration of services.

The rise of AJAX [38] leads to the type of web applications we are used to today. Coming
from a past in which JavaScript was mainly used to swap images on mouse-over actions
or validate forms before sending them, applications that have been developed for a single
target architecture and operating system can now be run on virtually any device and
OS that is connected to the internet.

Most notably, two companies tried to make web applications first class citizens—on
their mobile devices—early on, Palm with webOS and Apple with their first iPhone.
The latter even lacked support for a native development kit for over a year.

Obviously, the companies’ motivation was to provide developers with tools to build and
deliver their applications directly to their customers’ handsets, without having to worry
about device fragmentation or other low-level specifics.

Ranging from mail clients and spreadsheets to fully blown multimedia applications like
YouTube or Google Maps, it seems that there are effectively no limits on what can
be achieved inside a user’s browser today. The gap between a user’s browser and her
desktop will vanish even more, as HTML5 devotes a whole lot of its new functionality

68

www.manaraa.com

4.2 Related Work

to actually mimic the behavior of native applications.

Some of the key features include:

Offline Support gives HTML5 applications a dedicated storage—provided by the run-
time environment—to locally cache their data. In addition, developers may sub-
scribe to certain events, check for online connectivity, and perform synchronization.

File Access provides developers with access to a user’s file system, such that HTML5
applications may store and retrieve files locally. This represents a major advantage
over the status quo, which was often based on the proprietary FLASH format.

Graphics enables developers to make use of 3D acceleration hardware with very low
effort.

In this respect, it is quite impressive to see how far open-source frameworks, such as
Cappuccino1 or SproutCore2, have pushed the state-of-the-art: these packages devote
their existence “to build desktop-caliber applications that run in a web browser” in order
to give “a native experience—on the web”. Figure 4.2 on the following page shows
exemplary screenshots, illustrating desktop-caliber web applications with a native look
and feel. On recent machines, these applications run smoothly and seamlessly, and it is
quite easy to forget that they are running in a browser and not directly on the desktop.
SproutCore, for example, is backed by Apple, who in turn implemented their latest
icloud.com browser frontend using the open-source framework.

4.2 Related Work

The idea of using server-side XQuery implementations to foster application development
is not new and has been around for quite some time in competing open-source imple-
mentations such as the Sausalito project3, which claims to bring XQuery to the cloud,
or eXist-db4, one of the early native XML database systems. Both implementations use
different approaches and focuses to achieve this goal.

1http://cappuccino.org/
2http://www.sproutcore.com/
3http://www.28msec.com
4http://exist.sourceforge.net/

69

icloud.com
http://cappuccino.org/
http://www.sproutcore.com/
http://www.28msec.com
http://exist.sourceforge.net/

www.manaraa.com

4 XQuery Application Framework

Figure 4.2: Examples of desktop-caliber web applications. Above, left hand: the login
screen of http://icloud.com, which is broadly similar to native login and
configuration scenarios on the OS X. Right hand: an http://iwork.com
frontend reproducing its native counterpart, the Numbers office application
(both using the SproutCore framework). Below: a presentation application
built with the Cappuccino framework running on http://280slides.com/

70

http://icloud.com
http://iwork.com
http://280slides.com/

www.manaraa.com

4.2 Related Work

They mainly differ in two aspects: while the latter is more database-centric, the former
is about XQuery-powered application logic (exposing data-centric services through a
RESTful interface and delegating storage considerations to backend systems).

4.2.1 Sausalito – XQuery in the Cloud

Kaufmann and Kossmann were the first to describe the development of enterprise web
applications based on the W3C technology stack, as depicted in Figure 4.1 on page 67.

They concluded “that the W3C family of standards is very well suited for this task and
has important advantages over the state-of-the-art (e.g., J2EE, .Net, or PHP). Most
importantly, using XQuery and W3C standards only ensures a uniform technology stack
and avoids the technology jungle of mixing different technologies and data models. As a
result, the application architecture becomes more flexible, simpler, and potentially more
efficient.” [42]

A commercial offspring from this research is Sausalito, “a suite of tools that allow to
write, test, and deploy full-fledged web-based applications, entirely written in XQuery” [1].

The company behind, 28msec, directly follows their line of argument. They agree that
“XQuery has an extremely powerful support for database queries, scripting, and full-text
search. By using a single programming on all tiers, Sausalito is collapsing web servers,
application servers, and databases into a single stack.” [1]

As the project further documents, XQuery is used as a language for

• writing the application code
• defining the data and access structures (i.e., collections and indexes)
• accessing the data.

In a Sausalito project, all XQuery code is structured around XQuery modules. Handler
modules contain functions that are directly exposed using REST. Their main task is to
dispatch and orchestrate calls to library or external modules. Library modules provide
a rich set of functions, which help to implement application logic. They are not publicly
exposed and thus can not be called from the outside. External modules contain addi-
tional XQuery modules, provided by any third party. Once a Sausalito project is set up

71

www.manaraa.com

4 XQuery Application Framework

it is, generally, deployed on Amazon Web Services.

As such, Sausalito can be seen as a solution for building RESTful services with XQuery
running on cloud infrastructure. The framework uses sophisticated distributed commit
protocols [7] and exposes handler modules through HTTP. Its functions can be invoked
with any HTTP client, first and foremost a web browser. These functions constitute
the REST-based interface of a Sausalito application and trigger access to data stored
in a storage facility, i.e, an XML database, a JSON store, etc. Application logic is
implemented in XQuery and evaluated using the Zorba XQuery Processor5.

Figure 4.3 on the facing page illustrates Sausalito’s integrated application stack. An
XQuery application server is provided, which integrates a web server and database sys-
tem placed in a cloud environment. It leverages Zorba as a query processor and makes
use of its accompanying function libraries. On top of Zorba, a web server is responsible
for mapping REST requests to XQuery expressions. Beneath, the XQuery processor
Sausalito implements Zorba’s Store API in order to manage XML data (i.e., instances
of the XQuery Data Model). Data is stored in Amazon’s Simple Storage Service (S3),
and the Sausalito application server orchestrates access to it. Rich applications entirely
written in XQuery (including the update and scripting extensions) can thus be deployed
on the Amazon Web Service infrastructure.

4.2.2 eXist – the XQuery Servlet

eXist-db has been one of the first open-source native XML database implementations. It
pursues the goal of providing developers with an easy to use, out-of-the-box package:

eXist […] a native XML database system, which can be easily integrated into
applications dealing with XML in a variety of possible scenarios, ranging from
web-based applications to documentation systems running from CDROM. The
database is completely written in Java and may be deployed in a number of
ways, either running as a stand-alone server process, inside a servlet-engine
or directly embedded into an application.

Wolfgang Meier (project leader) on the goals of eXist [47]

5http://zorba-xquery.com/

72

http://zorba-xquery.com/

www.manaraa.com

4.2 Related Work

S

Web Server

Zorba
(XQuery Processor)

Sausalito XDM Store

Amazon’s
Simple Storage Service

(S3)

Browser Mobile

REST interface

Figure 4.3: Sausalito’s integrated application stack

eXist exposes all of its functionality, in addition to traditional programmatic APIs,
through web-enabled services: XQueryServlet and REST.

In order to generate a web page, eXist leverages standard XQuery to generate XHTML.
The XQuery runtime is bundled into a servlet implementation, which maps URLs to
XQuery script files residing in the filesystem. This very closely resembles the traditional
way of developing web applications and, as such, has a low-entry barrier for implementers
that come from scripting languages such as PHP, Python, Ruby or Perl.

Predefined modules exist to handle request parameters (e.g., GET-, POST- and cookie
data), sessions, and authentication. This already allows developers to build fully featured
applications relying solely on XQuery and eXist’s integrated XML storage.

The significance and versatility of eXist’s approach is even more emphasized by the
fact that the whole administrative user interface is provided as a web application itself.
Beside the administration interface, the eXide XQuery IDE6 succeeds at providing an
excellent in-browser IDE for developing XQuery. The REST-style interface to the data-
base works similar to the XQueryServlet; it only differs with respect to the location of

6Accessible online at http://demo.exist-db.org/exist/eXide/index.html

73

http://demo.exist-db.org/exist/eXide/index.html

www.manaraa.com

4 XQuery Application Framework

the actual XQuery script file: for REST, it is stored directly inside the database and
not accessible via the filesystem.

As XQuery is a very young language, the current implementations lack the richness of
third-party libraries that other language families and frameworks offer. Hence, develop-
ers are often challenged to either implement their own libraries or rely on community
efforts. For added functionality, eXist comes with a rich set of prepackaged extension
modules that assist developers in creating interactive applications: date & time, file,
mail, or image functions, to name only a few.

⋆ ⋆ ⋆

To get the best of both of these worlds—eXist’s straight forward approach and Sausal-
ito’s service oriented architecture—we present a framework that enables developers to
implement a distinct project structure that directly maps information resources to URLs,
combined with a direct way to provide end-user views in HTML or RESTfully exposed
data encoded in either XML oder JSON.

The main goals we set up for BaseX-Web were flexibility and service orientation, supplied
by a pure X-technology stack. Due to the appeal and ease of use that MVC architectures
provide, our framework follows these principles to clearly separate concerns regarding
storage, processing, and rendering of data (→ 4.3.1 on page 76). But first of all, we will
give an overview of our approach to connect the BaseX database management system
to the World Wide Web in order to establish an XQuery application framework.

4.3 System Overview

To eliminate binary dependencies, BaseX-Web is implemented as yet another database
client, which issues requests in XQuery and expects the server to return results serialized
as XML, XHTML or JSON.

The application server holds the “business logic”, i.e., the functions we want to perform
on the stored data. In general, this involves retrieving data from the database, process
any input data, whether queries or updates, accordingly (validate and verify results,

74

www.manaraa.com

4.3 System Overview

clients
request

response

BX

BX-W

BX-W

XQuery

XML

clients

Figure 4.4: System overview: BaseX-Web’s general operating sequence

ensure consistency) and send those back to the user interface.

In order to process web-related tasks (cookie handling, redirects and caching options),
BaseX has been extended in a non-intrusive way. Extensions for XQuery processors are
implemented as separate libraries in conformance with the EXPath packaging specifi-
cation7. They are to be loaded into the database management system once with the
repo install database command. As such, they can extend the database’s function-
ality whenever their service is needed, but do not encumber the base system or pollute
namespaces, otherwise.

The internal API of BaseX is used for the generation of results, which means that our
infrastructure directly benefits from all optimizations performed by the BaseX query
processor.

So as to provide a light-weight application server, the architecture is based on estab-
lished components. We used Java Servlet Technology, which provides “developers with
a simple, consistent mechanism for extending the functionality of a web server”8. The
frameworks logic is encapsulated in a Java servlet and deployed as server-independent
web application archive (war). A web application archive can be thought of as a pro-
gram that has to be run inside a dedicated environment, namely the servlet container.
Currently, the jetty:// web server9 is used as a HTTP server and servlet container,
as depicted in Figure 4.5:

7http://expath.org/spec/pkg
8http://www.oracle.com/technetwork/java/javaee/servlet/index.html
9http://www.eclipse.org/jetty/

75

http://expath.org/spec/pkg
http://www.oracle.com/technetwork/java/javaee/servlet/index.html
http://www.eclipse.org/jetty/

www.manaraa.com

4 XQuery Application Framework

AS

Servlet:
Cookies
Sessions

Templating

XHTML

Search
Forms

Web Services

BX

DB:
Persistence
Indexing
Querying

DB Client

DatabaseDatabase

W A

Figure 4.5: System overview: The main building blocks of BaseX-Web. jetty:// is
used as web server and servlet container. The server itself connects to the
BaseX XML-DBMS as a database client

4.3.1 Model-View-Controller

MVC is an architectural pattern. It splits software into three distinct development
components that interact with each other with respect to specific interfaces. Its goal
is to make program design more flexible, thus allowing to change or extend and reuse
functionality easily later on.

This idea is based on one simple observation: while user interfaces are subject to change
at a much higher speed—one might think of targeting different platforms and types of
applications, web applications, mobile apps & desktop applications—the domain logic
behind the application is usually much more constant over time. Using MVC even
fosters collaboration in development, as one developer might start implementing views
and presentational logic while another one copes with data abstraction and domain
logic.

76

www.manaraa.com

4.3 System Overview

Controller

View

Presentation

Model

Data Stores

User Action

Request Data
Modify Data

Load view
Provide Data

Dispatch

Persistence

Business Logic

Presentation XHTML

XML

XQuery

Figure 4.6: Using the Model-View-Controller paradigm to build a uniform X-technology
stack

The Model

The model encapsulates all data-related tasks and logic. In traditional software devel-
opment, this often relates directly to tables or views located in a DBMS. The model
may also be responsible for enforcing constraints on data structures, such as having cer-
tain attributes present or conform to certain conditions. Some publications [9, 59] also
differentiate between

• the active model, which has a notification mechanism—usually implemented with
the Observer pattern—and notifies its views or controller of changes, and

• the passive model, which is completely unaware of the fact that it is part of an
MVC architecture.

As web applications must obey a strict request-response cycle, and are usually stateless,
we will refer to passive models in the following unless mentioned otherwise.

77

www.manaraa.com

4 XQuery Application Framework

The View

The view does nothing but obtain data from the model, and present it to the user.
Usually, a view is instantiated by the controller, which also passes the needed data in.
Views are not supposed to change or modify, or in any other way interfere with the
model. All this is done by the controller.

The Controller

Controllers maintain the state and business logic of the application; they act as glue
between the models and their views. Controllers react to user actions and provide
their respective views with requested data that is obtained from the model. Originally
designed for the implementation of GUIs of desktop applications, controllers have been
the interface which is responsible for dispatching the event loop of a particular view.
For example, controllers receive keyboard, timer, or mouse events from a view and
change the state of a model. In its original definition, a controller was not meant to
act as a mediator between the view and the model, but this gradually changed with
web application frameworks. The special characteristics of web applications led to the
introduction of various controller patterns, most notably that of the:

Front Controller as a single point of entry for dispatching HTTP requests,

Page Controller coordinating the logic on a single web page, and

Application Controller that defines the business logic of the whole application.

These controllers are often cascaded, in a such way that the front controller accepts
incoming requests, dispatches them to a page controller’s action, which in turn renders
a view, handles this view back to the page controller, which in return sends a complete
page back to the client.

This further extends the separation of concerns adequately for the special case of web
applications as, from an architectural point of view, different actors in the application
are driven by different demands. As an example, the HTML representation, which is
the view in the eyes of the web server, becomes the model once it is sent to the client

78

www.manaraa.com

4.3 System Overview

and rendered inside the browser, and may be part of an MVC architecture on the client
side, if used, for example, in conjunction with JavaScript.

4.3.2 Application Layout

BaseX-Web was developed with the MVC paradigm as guiding principle in mind. Appli-
cations implemented on top of BaseX-Web have to follow some basic rules that directly
derive from it. The general application layout and its project’s directory structure are
an example:

The models folder may contain XML
Schema definitions to validate data before
it is inserted into a database.

The controllers folder contains an arbi-
trary number of controllers that encapsu-
late reusable business logic.

The layouts folder contains predefined
(X)HTML pages inside which evaluated
content is placed before it is served.

The views folder contains a folder for
each controller available inside the appli-
cation and has XQuery files—named ac-
tions—that respond to a unique URL.

DeepWebApplication
|-- models
| `-- fsml.xsd
|-- controllers
| `-- deepweb.xq
|-- layouts
| |-- ajax.html
| `-- default.html
`-- views

`-- deepweb
|-- search.xq
|-- ls.xq
|-- dir.xq
`-- action.xq

Developers are forced to explicitly categorize their project’s files, depending on their
functionality, as this fosters collaboration: once learnt, developers know where to put
and find the functions they are searching for. In addition, we are able to map this
directory layout to meaningful URLs that contain information resources.

79

www.manaraa.com

4 XQuery Application Framework

4.3.3 Request-Response Cycle

The following part deals with implementation and engineering details, which were neces-
sary to make our application server “talk” XQuery. We will follow a full request-response
loop from a user’s browser to our server and back (Figure 4.7 on the facing page).

Please note that, even though we chose jetty:// as our web container, the results are
as well applicable to any other implementation conforming to the servlet specification.

Incoming HTTP requests that address a web application inside BaseX-Web must adhere
to the following pattern: /app/$controller/$action. The servlet will parse this URL
and ensure that the following preconditions are given:

• an XQuery file controllers/$controller.xq may exist inside the project direc-
tory; if it does, a flag is set

• an XQuery file views/$controller/$view.xq must exist inside the project direc-
tory

If the view exists, it is read into memory. If not, an HTTP/404 error is sent to the
client.

In case the specified controller module exists, it is imported into the view. The servlet
injects the module import into the view, such that all functions defined inside the con-
troller are available to the view in the $controller namespace. This convenient auto-
magic frees the user from manually importing the view’s controller for each view she
implemented.

Subsequently, the view and, optionally, the embedded controller are passed on to the
BaseX client QueryProcessor instance and wait until they are sent to the BaseX server
for evaluation.

Side effects that are caused by parameters being sent to the requested URL, such as
GET, POST, COOKIE or SESSION, are bound in a map10 to the QueryProcessor as external
XQuery variables. These variables are accessible inside the view via $GET('param') and
allow users to pass on parameters in order to send specific information to the website.

10XQuery’s notion of Key-Value-Paris

80

www.manaraa.com

4.3 System Overview

Layout

GET:
/app/controller/index

C
GET or POST Request

AS
Servlet

controller.xq
business logic

index.xq
template

BX

XQuery

Result
Result

/app/controller/index

response Object
Body

Cookies

+-+ BaseX.org

To maximize
your
productivity
and
workflows, we
offer
professional
support, highly
customized
software
solutions and
individual
trainings on
XML, XQuery
and BaseX. Our
product itself
is completely
Open Source
(BSD-licensed)
and platform
independent;!

BaseX is a very light-weight, high-performance
and scalable XML Database engine and
XPath/XQuery Processor, including full
support for the W3C Update and Full Text
extensions. An interactive and user-friendly
GUI frontend gives you great insight into your
XML documents.

BaseX is a very light-weight, high-performance
and scalable XML Database engine and
XPath/XQuery Processor, including full
support for the W3C Update and Full Text
extensions. An interactive and user-friendly
GUI frontend gives you great insight into your
XML documents.

Figure 4.7: Complete request-response cycle. User requests trigger the “XQuery con-
struction” step, i.e., the controller gets embedded into a page template.
Processing of the result page is done by the BaseX query processor, which
accesses databases if needed

At this stage, the query and its arguments are fully specified, and the query is dispatched
to the BaseX database server. The server processes the query—like any other incoming
query—and returns the result back to the servlet. A dedicated XQuery extension module
provides the implementor with special-purpose functions to modify parameters that are
related to the servlet HttpServletResponse11 object.

The invocation of any of these functions triggers a notification from BaseX to the servlet.
The notification adheres to the command pattern, as depicted in Listing 14 on the next
page.

The servlet watches for these events and invokes the appropriate methods with the
given arguments in order to modify the response accordingly. Meanwhile, the servlet
waits for BaseX to return the evaluated query results. Once a result is received, the

11http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html

81

http://docs.oracle.com/javaee/6/api/javax/servlet/http/HttpServletResponse.html

www.manaraa.com

4 XQuery Application Framework

<command name="set-cookie">
<session>21d87371-9e01-4b3c-936a-4c80bad47019</session>
<arg>Cookiename</arg>
<arg>This is the cookie’s value</arg>

</command>

Listing 14: XML fragment notifying the servlet to add a cookie to the response

servlet embeds the resulting string into layouts/ default.html, unless asked by the
implementer to do otherwise, and flushes it into the response body. Afterwards, the
response will be sent to the client. It includes all received headers and the complete
body, which represents the full web page.

An extensive discussion of further implementation details can be obtained from the
Master Thesis [57] that accompanied this work.

4.4 Summary

BaseX-Web sprung from the desire to develop graphical user interfaces and user appli-
cations that do not depend on the internal APIs of a database, such as e.g., the native
visualizations of BaseX.

Our considerations have finally led to an architecture that allows the user to develop and
run data-driven applications. While the development can be carried out on a more high-
level and generic abstraction layer, it still provides full-fledged database support. Direct
access to indexes and other internal data structures have been wrapped into XQuery
modules and can be integrated whenever required. BaseX-Web is a powerful web appli-
cation framework for creating uniform search and retrieval services without being a slave
to a multitude of languages and concepts. The implementation of services exclusively
relies on the W3C technology family, eliminating unnecessary paradigm shifts.

Kaufmann and Kossmann concluded their work “Developing an Enterprise Web Ap-
plication in XQuery” with the words: “Today, the biggest concern in adopting this
approach [using the uniform W3C technology stack (author’s note)] is that there are no
mature application servers available, but we believe that the situation will change soon
in this regard. […] In the future, more experience with other applications [others, than

82

www.manaraa.com

4.4 Summary

the evaluated demo application in the paper (author’s note)] is needed.” [42]

BaseX-Web is our contribution to address these issues. Although a larger portion of
convenience code, such as scaffolding, is not available yet, BaseX-Web—as a light-weight
and highly extensible framework—is already used in production, as it represents a solid
basis for complex web applications. It is also available online as a public open-source
project.

An application like the presented “Desktop Query Engine” at the end of Chapter 3
clearly illustrates the advantage of having an extended database architecture as a service
within a modern operating system. Similar to desktop search engines like Spotlight, the
application provides methods to manage personal information.

The database architecture can be applied to implement such a service by exclusively
relying on the XML technology stack. While XQuery is used to query the filesystem
contents, the frontend can be realized as a desktop-caliber web application, which enables
the user to perform keyword searches, visually explore the results, or steer a faceted
search navigation.

In the following chapter, we will describe the realization of another search system. In the
course of its evaluation, the second addressed issue will be solved, namely that “more
experience with other applications is needed”. We will discuss the necessary steps to
bootstrap an expert retrieval system that directly benefits from BaseX-FS and BaseX-
Web.

Next, a generic solution for an OPAC (Online Public Access Catalogue) system will be
illustrated as one possible use case for a purely XQuery-driven web application. It will
demonstrate how an information system works with distinct data sources. Ideally, there
should be support for queries on library-oriented metadata (author, title, publisher,
ISBN) and for queries that directly operate on the content (full-texts for publications,
metadata for multimedia documents).

By setting up a concrete example application, we want to illustrate how our XML
database architecture can form a strong foundation for the construction of data driven
search and retrieval systems in general.

83

www.manaraa.com

www.manaraa.com

5 Kickstarting an Infrastructure

Online Public Access Catalogs (OPAC) are online databases that provide user access to
a library catalog, usually in the form of a web application. As today’s libraries have
great amounts of all kinds of different media—think of books, newspapers, magazines,
journals, DVDs and software—sophisticated retrieval systems are crucial.

Kickstarting such a retrieval system on top of our architecture is not only elegant, but
also straightforward. In the following paragraphs, we will illustrate the process by first
sketching the general system setup and then evaluating it against real-world data.

Therefore, we will take the raw data of the Konstanz Online Publication System (KOPS),
an OPAC run by the Library of the University of Konstanz, and bootstrap a basic OPAC
system solely powered by BaseX and the extensions discussed in the previous chapters.

We want to demonstrate that we are able to kickstart a performant retrieval system
realized with significantly less implementation effort (compared to state-of-the-art so-
lutions), that, in addition, is easy to extend and customize towards future information
demands.

5.1 Online Public Access Catalog (OPAC)

An OPAC enables users to conduct searches for traditional bibliographic metadata, such
as authors, titles, keywords, institutes or publishers.

This rather blurry definition of OPACs led researchers to refining this concept, to what
they now name a digital library. In “The DELOS Digital Library Reference Model.
Foundations for Digital Libraries” [2], the authors refer to a digital library as a three-tier

85

www.manaraa.com

5 Kickstarting an Infrastructure

framework providing services and infrastructure, which consists of three core layers:

Digital Library (DL)
An organisation, which might be virtual, that comprehensively collects, man-
ages and preserves for the long term rich digital content, and offers to its
user communities specialised functionality on that content, […].

Digital Library System (DLS)
A software system that is based on a defined (possibly distributed) architec-
ture and provides all functionality required by a particular Digital Library.
Users interact with a Digital Library through the corresponding Digital Li-
brary System.

Digital Library Management System (DLMS)
[…] that provide[s] the appropriate software infrastructure both (i) to produce
and administer a Digital Library System […] and (ii) to integrate additional
software offering more refined, specialised or advanced functionality.

c.f. [2, p. 17]

5.2 Konstanz Online Publication System (KOPS)

The Library of the University of Konstanz provides an institutional repository called
“Konstanz Online-Publikations-System” (KOPS). It is an information platform sup-
porting the Open Access1 initiative. Members of the University can publish digital doc-
uments and make them available on the internet. An online search interface provides
simple and advanced keyword search options. Simple search is restricted to keywords,
while advanced search allows for boolean queries on author, title, project, keywords,
DDC (Dewey Decimal Classification), and full-text retrieval.

KOPS is driven by the Open Source Software DSpace2. DSpace is a major player in
the field of institutional repositories. It supports all kinds of media types, such as text
corpora, scans, photographies, video contents and many others. In KOPS, it is used
to

1Open Access (OA) stands for unrestricted, toll-free online access to scientific and scholarly knowledge
and information.

2www.dspace.org

86

www.dspace.org

www.manaraa.com

5.2 Konstanz Online Publication System (KOPS)

• search for one or more keywords in metadata or extracted full-texts
• browse through author, title, project, keywords, date or category

DSpace is organized into a classical three-tier architecture with each layer consisting of
a number of components3.

Figure 5.1: DSpace System Architecture Overview

Behind the scenes, the main components are Lucence4, the open source Java search
engine, a storage layer with an RDBMS, and a so-called Bitstream Store5 to store
binary content. Lucene allows categorized searches, stopword removal, stemming, and
the ability to incrementally add new indexed content without regenerating the entire
index.

At the time of writing, KOPS contained 12,312 library entries. 4,163 entries were only
library-oriented metadata with no document attached, and 8,149 were available with
the complete full-text.

3https://wiki.duraspace.org/display/DSDOC18/Architecture
4http://lucene.apache.org/
5Either filesystem or a Data Grid Management System called DICE Storage Resource Broker http:

//www.sdsc.edu/srb/index.php/Main_Page

87

https://wiki.duraspace.org/display/DSDOC18/Architecture
http://lucene.apache.org/
http://www.sdsc.edu/srb/index.php/Main_Page
http://www.sdsc.edu/srb/index.php/Main_Page

www.manaraa.com

5 Kickstarting an Infrastructure

5.3 XML OPAC

5.3.1 Intention

In the following, we demonstrate that BaseX—with its extensions for rich-media indexing
(BaseX-FS) and web application framework (BaseX-Web)—is capable of bootstrapping
an infrastructure such as KOPS

• by exclusively utilizing a state-of-the-art XML-DBMS, and
• without ever leaving the unified X technology stack

Advantages we expect from our approach:

• low entry barrier: reduced design, setup and administration effort
– load information “as is”. No need to define a data model in advance
– data driven approach: index and search on anything that has been loaded

without knowing the questions ahead of time
• low implementation effort/high expressiveness

– no glue code, no impedance mismatch (data is XML, business logic is XQuery,
result presentation is XHTML)

– full-text functions, for example, are first-class citizens, while in comparable
systems this functionality is either vendor-specific or has to be added by
additional, external subcomponents

• lean system architecture
– Instead of having a combined system architecture (like the one depicted in

Figure 5.1 on the preceding page, i.e., a RDBMS, a concurrent full-text index
engine …), XML-DBMS are document-centric information stores tuned to
operate on semi-structured data.
A major advantage stemming from this fact is that programmatic access to
all system components (such as full-text indexes) is provided in a consistent
and transparent way through XQuery6. It is sufficient to master a single
system instead of being an expert in a multitude of subcomponents and their
interweavements.

6(: Returns all index entries for text nodes starting with "Germ" :)
index:texts("factbook", "Germ")

88

www.manaraa.com

5.3 XML OPAC

The following two sections will give a brief and concise overview of the steps necessary
to bootstrap the base system and to configure it towards an online retrieval system.

5.3.2 Foundation: General System Setup

Consider a vanilla server machine. The proposed architecture is built upon an arbitrary
Linux distribution with Java and Fuse support. In the next step, the BaseX database
server with its BaseX-FS extension is installed.

Two ways of bringing the content into the database system can be considered. As
mentioned, the library data set consists of 8,149 publications. The simplest approach is
to just make use of the generic BaseX-FS’ transducers (Section 2.2 on page 29).

The PDF transducer will break down the binary information silo and aggregate meta-
data, full-text, annotations and embedded images into a unified XML representation.
Original raw data is incorporated into the database system as well. Bulk-loading the
initial data set now boils down to:

• Mount an empty database as filesystem
• Copy the documents into the database/filesystem
• Let transducers construct an XML view of the data

The resulting database will contain a uniform view on the metadata, formerly available
only to dedicated programs; it will allow us to handle these data in a standardized
and generic way. Throughout the whole process, our mapping does not contain any
information specific to our use case. Instead, we extract all information as is, leaving
alone any assumption about which data we are going to need afterwards.

Listing 15 on the following page shows how full-text of a document is stored in the
database7.

The second approach takes into account that each publication in KOPS has already
encountered extensive bibliographic tagging. In order to leverage this—by librarians,
manually processed data—a specialized transducer can be plugged into the transducer

7A more detailed database excerpt is shown in Appendix Listing 22 on page 124

89

www.manaraa.com

5 Kickstarting an Infrastructure

<folder name="pages">
<folder name="page" number="1">

<fact name="text">
Interactive exploration of fuzzy clusters using Neighborgrams
Michael R.Berthold — Bernd Wiswedel — David E.Patterson

Department of Computer and Information Science,University of Konstanz,Box M712,78457 Konstanz,Germany

Data Analysis ResearchLab,Tripos Inc.,USA

Abstract
We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a
given,labeled data set.

The presented method is therefore best suited for applications where the focus of analysis
lies on a model for the minority class or for small to medium-sized data sets.

The clustering algorithm creates one dimensional models of the neighborhood for a set of patterns
[…]

</fact>
</folder>

Listing 15: KOPS-FSML.xml: Extracted full-text from online resource

chain. Besides the conventional, generic PDF metadata and full-text extraction, it adds
bibliographic metadata as opacinfo to the result (example shown in Listing 16).

<file name="1896748.pdf" suffix="pdf" st_size="533883">
<folder name=".1896748.pdf.deepfs">

<folder name="opacinfo">
<fact name="pagecount">17</fact>
<fact name="author">Berthold, Michael</fact>
<fact name="author">Wiswedel, Bernd</fact>
<fact name="author">Patterson, David E.</fact>
<fact name="title">Interactive exploration of fuzzy clusters using Neighborgrams</fact>
<fact name="town">Konstanz</fact>
<fact name="publisher">Bibliothek der Universität Konstanz</fact>
<fact name="year">2005</fact>
<fact name="format">Online-Ressource</fact>
<fact name="note">Article</fact>
<fact name="signature">|004</fact>
<fact name="language">Englisch</fact>
<fact name="category">Informatik</fact>
<fact name="url">http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65525</fact>
<fact name="creation-date">November 17, 2004 21:34:22 (UTC)</fact>
<fact name="modification-date">October 13, 2008 14:42:40 (UTC +02:00)</fact>

</folder>
<folder name="fulltext">

Listing 16: KOPS-FSML.xml: Bibliographic metadata about online resource

Briefly summarized, the xmlified and raw content is stored inside BaseX and can be

90

www.manaraa.com

5.3 XML OPAC

queried, using a standardized, declarative API written in XQuery. Having completed
this initial step we are ready to configure our online retrieval application. Using BaseX-
Web as application framework a developer can easily leverage the database to analyze,
search, and discover all data at various levels of granularity since every asset of interest
is now indexed and homogeneously represented in the database.

5.3.3 Configuration: Shaping a Retrieval Application

After having completed the initial steps, extracting and preloading the OPAC data, we
are ready to set up our application skeleton.

We start conceptually, by defining which user requests our system will respond to, and
how search results are going to be represented internally. As XQuery—contrary to its
relational counterparts—is a fully fledged programming language, we face a much higher
level of expressiveness and at the same time we eliminate the need of scripting language
glue code when processing user input.

Listing 17 shows a query that performs a search for all works that match a given key,
value combination and <file /> elements for further processing. To parametrize the
function we pass two strings, the key we are searching for and its wanted value. Once
we have defined the search functionalities in terms of XQuery functions, we are ready to
leverage the frameworks capabilities. We add those expression as functions to an OPAC
controller, located in controllers/opac.xq.

(: Search works matching a given key/value combination: :)
declare function opac:keyValue($key, $value){
//file[.//fact[./@name eq $key and . eq $value]]

};

Listing 17: An XQuery function returning all file elements matching a specific key,
value combination

In order to extend the search capabilities—more elaborate examples will be given in
Section 5.4—implementers have to do little more than adding more XQuery functions
to the controller. All defined functions may as well be used in any context besides an
web application, so far we have only defined the search process, not its representation.

91

www.manaraa.com

5 Kickstarting an Infrastructure

Afterwards we define how these internal results are to be transformed to a more browser
—and user-friendly—(X)HTML representation, by providing a view. A view will not
only request the search results and conduct the transformation, but as well represents
an unique, machine accessible resource that provides an interface to underlying data.

In order to return a list of all elements that matched a particular search request, we
create views/opac/simple-search.xq, a view that:

• receives user input, the search parameters
• leverages the controller’s function(s) to obtain result data from the database and
• passes results back to the view, which in return transforms these to XHTML

Once created, that particular view is immediately accessible at http://xmlopac/app/
opac/simple-search.

A result page view based on the previous definition of opac:keyValue is shown in
Listing 18. This very generic approach may be used to render file-elements regardless
which transducer produced their metadata.

for $media in opac:keyValue($field, $value)
return

<div>
<h2>{ $media//fact[@name eq "title"]/text() }</h2>
<p>
written by { $media//fact[@name eq "author"]/text() }
on { $media//fact[@name eq "creationdate"]/text() }
</p>

</div>

Listing 18: The XQuery OPAC simple search view

The BaseX-Web server will automatically take care of importing the controller inside the
view, thus making its defined functions available inside the opac namespace. Figure 5.2
depicts how the components work together to form the basic infrastructure.

92

http://xmlopac/app/opac/simple-search
http://xmlopac/app/opac/simple-search

www.manaraa.com

5.3 XML OPAC

Model kops-fsml.xml
@۔<
�ILOH QDPH ۍ��������SGIۍ VXIIL[ۍSGIۍ VWBVL]H ۍ������ۍ!

�IROGHU QDPH ۍ���������SGI�GHHSIVۍ!
�IROGHU QDPH ۍRSDFLQIRۍ!

�IDFW QDPH ۍSDJHFRXQWۍ!����IDFW!
�IDFW QDPH ۍDXWKRUۍ!%HUWKROG��0LFKDHO��IDFW!
�IDFW QDPH ۍDXWKRUۍ!:LVZHGHO��%HUQG��IDFW!
�IDFW QDPH ۍDXWKRU3!ۍDWWHUVRQ��'DYLG�(���IDFW!
�IDFW QDPH ۍWLWOHۍ!,QWHUDFWLYH�H[SORUDWLRQ�RI�IX]]\�FOXVWHUV�XVLQJ�1HLJKERUJUDPV��IDFW!
�IDFW QDPH ۍWRZQۍ!.RQVWDQ]��IDFW!
�IDFW QDPH ۍSXEOLVKHUۍ!%LEOLRWKHN�GHU�8QLYHUVLW¦W�.RQVWDQ]��IDFW!
�IDFW QDPH ۍ\HDUۍ!������IDFW!
�IDFW QDPH ۍIRUPDW2!ۍQOLQH�5HVVRXUFH��IDFW!
�IDFW QDPH ۍQRWHۍ!$UWLFOH��IDFW!
�IDFW QDPH ۍVLJQDWXUHۍ!_�����IDFW!
�IDFW QDPH ۍODQJXDJHۍ!(QJOLVFK��IDFW!
�IDFW QDPH ۍFDWHJRU\ۍ!,QIRUPDWLN��IDFW!
�IDFW QDPH ۍXUOۍ!KWWS���QEQ�UHVROYLQJ�GH�XUQ�QEQ�GH�EV]�����RSXV��������IDFW!
�IDFW QDPH ۍFUHDWLRQ�GDWH1!ۍRYHPEHU��������������������87&���IDFW!
�IDFW QDPH ۍPRGLILFDWLRQ�GDWH2!ۍFWREHU��������������������87&����������IDFW!

��IROGHU!
�IROGHU QDPH ۍIXOOWH[Wۍ!

�IROGHU QDPH ۍSDJHVۍ!
�IROGHU QDPH ۍSDJHۍ QXPEHU ۍ�ۍ!

�IDFW QDPH ۍWH[Wۍ!
,QWHUDFWLYH�H[SORUDWLRQ�RI�IX]]\�FOXVWHUV�XVLQJ�1HLJKERUJUDPV
0LFKDHO�5�%HUWKROGۅ��%HUQG�:LVZHGHOۅ��'DYLG�(�3DWWHUVRQ

'HSDUWPHQW�RI�&RPSXWHU�DQG�,QIRUPDWLRQ�6FLHQFH�8QLYHUVLW\�RI�.RQVWDQ]�%R[�0����������.RQVWDQ]�*HUPDQ\

'DWD�$QDO\VLV�5HVHDUFK/DE�7ULSRV�,QF��86$

$EVWUDFW
:H�GHVFULEH�DQ�LQWHUDFWLYH�PHWKRG�WR�JHQHUDWH�D�VHW�RI�IX]]\�FOXVWHUV�IRU�FODVVHV�RI�LQWHUHVW�RI�D
JLYHQ�ODEHOHG�GDWD�VHW�

7KH�SUHVHQWHG�PHWKRG�LV�WKHUHIRUH�EHVW�VXLWHG�IRU�DSSOLFDWLRQV�ZKHUH�WKH�IRFXV�RI�DQDO\VLV
OLHV�RQ�D�PRGHO�IRU�WKH�PLQRULW\�FODVV�RU�IRU�VPDOO WR�PHGLXP�VL]HG�GDWD�VHWV�

7KH�FOXVWHULQJ�DOJRULWKP�FUHDWHV�RQH�GLPHQVLRQDO�PRGHOV�RI�WKH�QHLJKERUKRRG�IRU�D�VHW�RI�SDWWHUQV
@۔<

��IDFW!
��IROGHU!
�IROGHU QDPH ۍSDJHۍ QXPEHU ۍ�ۍ!

�IDFW QDPH ۍWH[W۔<!ۍ@��IDFW!
��IROGHU!
@۔<

��IROGHU!
��IROGHU!

��IROGHU!
��ILOH!

Controller opac.xq

View simple-search.xq

Pass Results

Request Data

YLHZV�RSDF�VLPSOH�VHDUFK�[T

•
•
•

KWWS���ORFDOKRVW�DSS�

RSDF�VLPSOH�VHDUFK

RSDF�NH\9DOXH

ILOH

IRU �PHGLD LQ RSDF�NH\9DOXH��ILHOG� �YDOXH�
UHWXUQ
�GLY!
�K�!^�PHGLD��IDFW>#QDPH HT !��K��`��WH[W@ۍWLWOHۍ

�S!
ZULWWHQ�E\�^�PHGLD��IDFW>#QDPH HT `���WH[W@ۍDXWKRUۍ
RQ�^�PHGLD��IDFW>#QDPH HT `���WH[W@ۍFUHDWLRQGDWHۍ
��S!

��GLY!

VLPSOH�VHDUFK�[T

RSDF

NH\�YDOXH

�ILOH��!

NH\ YDOXH

FRQWUROOHUV�RSDF�[T

���6HDUFK�ZRUNV�PDWFKLQJ�D�JLYHQ�NH\�YDOXH
FRPELQDWLRQ����

GHFODUH IXQFWLRQ RSDF�NH\9DOXH��NH\�
�YDOXH�^

��ILOH>���IDFW> ��#QDPH HT �NH\ DQG
� HT �YDOXH@@

`�

RSDF�[T ILOH
NH\�YDOXH

http://localhost/app/opac/index?field=author&value=Berthold,%20Michael
;0/�²¬23$&�

KNIME: The Konstanz Information MinerKNIME: The
Konstanz Information Miner
written by Michael R. Berthold, Nicolas Cebron, Fabian Dill, Giuseppe Di Fatta, Thomas R. Gabriel,
Florian Georg, Thorsten Meinl, Peter Ohl, Christoph Sieb, Bernd Wiswedel on August 01, 2006
13:09:52 (UTC)

Towards Associative Information AccessTowards
Associative Information Access
written by Michael R. Berthold, Andreas Nürnberger on March 13, 2006 17:52:22 (UTC +01:00)

Constructing Fuzzy Graphs from ExamplesConstructing
Fuzzy Graphs from Examples
written by Michael R. Berthold, Klaus-Peter Huber on April 24, 1999 18:27:41 (UTC)

Figure 5.2: The core components of the web architecture:
Model contains the complete data extracted from KOPS
View represents an URL and orchestrates user requests to parameterized
XQuery function calls
Controller holds the logic to retrieve and return search results

The screenshot shows the computed result rendered inside a browser
when opening http://xmlopac/app/opac/simple-search?field=
author&value=Berthold,%20Michael

93

http://xmlopac/app/opac/simple-search?field=author&value=Berthold,%20Michael
http://xmlopac/app/opac/simple-search?field=author&value=Berthold,%20Michael

www.manaraa.com

5 Kickstarting an Infrastructure

5.4 Evaluation Setup

In the previous section we have shown how to quickly setup a basic infrastructure to
drive a search and retrieval system. We now want to put our system to the test and
examine if it’s equally fast when it comes to the evaluation of common search requests.

To conduct our real-world data study, we obtained a full dump of all data available online
in KOPS and transformed it into an XML representation. As already shown, the result-
ing XML database instance contains all entries of the original data, the bibliographic
metadata and, whenever available, the full-texts of the actual PDF documents.

Some key characteristics for the input data and the resulting database are displayed in
Table 5.1.

Input statistics Index statistics
Size of input data 17 GB Size of full-text index 614 MB
files 8,149 # full-text index entries 1,984,734
PDF pages 254,299 # XML nodes 3,671,331
authors 25,793 # <fact/> elements 668,191

Table 5.1: Statistics on the original KOPS library resources and the resulting database
kops-fsml.xml

All queries were benchmarked against BaseX Version 7.1 with the following settings:
java -server -Xmx4096m -Xms1024m. To make results more reliable, we restarted
BaseX before each test, then every query was run 20 times to warm the caches. Next, the
actual measurements were performed by running the query again for 10 times and storing
the average response times, which include all evaluation steps (parsing, compilation,
evaluation of the query, and serialization of the results).

94

www.manaraa.com

5.5 Queries and Performance Results

5.5 Queries and Performance Results

5.5.1 Keyword Search

Due to its simplicity, keyword search has turned out to be one of the most dominant
approaches for expressing one’s information needs on the internet. Keywords are filled
in by users into search fields, then matched against inverted indexes for an underlying
text corpus, and all documents are returned that contain the keywords and potentially
related terms. Related terms may be derived by stemming the text corpus or enhancing
the full-text with thesauri and language specific features.

As a consequence, high performance in keyword search scenarios is crucial for a system’s
acceptance, and the full-text extension of XQuery [12] provides a standardized way of
formulating such requests for XML. A keyword search in XQuery Full Text that retrieves
relevant document files can, for example, be expressed as shown in Listing 19.

Query: Keyword search using XQuery Full Text

let $words := ("problem", "properties")
return //*[text() contains text { $words } all words]/ancestor::file

Listing 19: A keyword search function for the OPAC XQuery module (opac.xq)

So as to benchmark the keyword search performance, we randomly selected 10 keywords
from the text corpus and performed a keyword search for all possible combinations
(
(
10
2

)
= 45) of those 10 words. Each query was run 10 times against a document corpus

containing 250, 500, 1000, 2000, 4000 and 8000 source documents.

Results: Table 5.2 on the following page shows the runtime statistics for each of the
six database instances. The results can be read as follows: For the largest database
containing 8000 documents all 45 keyword search queries could be evaluated in a total
time of 706.32ms. Thereby the fastest query took 8.92ms and the slowest 36.75ms.
On average the evaluation could be performed in 15.70ms. Adding up all matching

95

www.manaraa.com

5 Kickstarting an Infrastructure

documents this results in a total number of 27, 169 hits (the single number of hits for
each query can be derived from Table 5.3 on the next page).

Corpus size 250 500 1000 2000 4000 8000
Total time 12.04 30.55 63.59 164.67 367.61 706.32
Min 0.06 0.14 0.43 1.62 4.59 8.92
Max 0.66 2.28 5.33 9.07 14.09 36.75
AVG 0.27 0.68 1.41 3.66 8.17 15.70

Total # of Hits 709 1,570 3,135 6,813 14,037 27,169

Table 5.2: Runtime statistics for the keyword search queries against six differently sized
corpora

Figure 5.3 is showing two graphs depicting these results again. For each of the six
database instances on the abscissa it shows

(a) how many documents have been evaluated as matches and
(b) how much time in ms, this evaluation took on average.

��

�����

������

������

������

������

������

��
�
��
�

��
��

��
��

��
��

��
��

��

��

���

���

���

�
�
�
�
�
��
�
��
�
��
�

�
�
�
��
�
�
��
�
�
�
�
��
�
�
��
��

�
��
��
��

�
�

�������������������

��������������������������
������������������������

Figure 5.3: Average runtime in ms (red line/right y-axis) to evaluate 45 keyword queries
on each of the six corpora (x-axis). Blue line/left y-axis shows the accumu-
lated number of matching documents

Detailed performance results for the 8000 source documents are shown in Table 5.3 on
the facing page. It depicts all 45 possible combinations of the keywords in question,
and shows the absolute number of hits and the time needed for returning the results of
particular keyword combinations.

96

www.manaraa.com

5.5 Queries and Performance Results

germany problem change science formation situation space properties material power
germany — 645 / 15.28 919 / 22.07 1387 / 36.75 976 / 20.06 438 / 12.26 554 / 13.17 1010 / 18.98 777 / 17.58 506 / 13.64
problem — — 813 / 21.14 669 / 17.13 417 / 11.59 795 / 21.61 724 / 21.57 625 / 16.98 438 / 12.53 508 / 15.12
change — — — 860 / 21 842 / 20.49 666 / 18.04 628 / 17 863 / 21.41 541 / 14.84 612 / 18.25
science — — — — 799 / 18.55 338 / 9.72 492 / 13.07 793 / 17.95 393 / 10.73 483 / 13.34

formation — — — — — 386 / 10.63 380 / 10.65 912 / 21.65 608 / 15.36 291 / 8.92
situation — — — — — — 338 / 10.24 371 / 10.07 376 / 10.66 321 / 10.53

space — — — — — — — 628 / 17.54 314 / 9.09 404 / 11.65
properties — — — — — — — — 622 / 16.53 407 / 11.45
material — — — — — — — — — 300 / 9.5
power — — — — — — — — — —

Table 5.3: Number of results and time for generating the results for a keyword search
against the 8000 file database

Analysis: Due to the exploitation of the full-text indexes, all query runtimes scale lin-
early for the tested database instances. Index lookup itself is negligible and the most
limiting factor in terms of performance is the number of the results, as this determines
the amount of data to be serialized. Hence, very large corpora may be searched yielding
very fast response times. In our specific case, the slowest query, searching for the key-
words germany and science, needs 36.75ms on the largest corpora, yielding 1.387 result
documents.

5.5.2 Phrase Search

There are numerous cases in which plain keyword searches alone are too limiting. Phrase
search is a highly needed functionality for most current retrieval systems. It enables users
to search for, e.g., compound names, terms and sentences containing words in a fixed
order. Phrase searching removes noise, added by documents that contain the keywords
but not necessarily in the order requested by the user.

Table 5.4 lists phrases of lengths two to five, that have been manually selected from the
kops-fsml.xml corpus. The phrases themselves consist of keywords that—concerning
their number of index entries—cover a range from rare to very frequent. The runtime
statistics show a much higher variance than in the previous test case: query runtimes do
not increase with the number of hits; an explanation will be given in the analysis. An
XQuery script, shown in Listing 23, has been used to generate the results in Table 5.4.

97

www.manaraa.com

5 Kickstarting an Infrastructure

Query: Phrase search using XQuery Full-Text

//*[text() contains text "with respect to" phrase]

Results. Table 5.4 shows the conducted phrase searches and their average execution
time for ten runs. The number of matching nodes is given for each phrase, and each
phrase’s keyword is listed with the number of occurrences in the Full-Text index.

T(ms) # matching node chosen phrase, with number of index entries per keyword

Q 1 0.45 0 minor: 2218; drawback: 450
Q 2 1.25 2 major: 8553; deficiency: 368
Q 3 2.88 79 particularly: 4800; strong: 9900
Q 4 5.33 18 special: 5669; interest: 7380; group: 15147
Q 5 6.10 51 major: 8553; contribution: 4139
Q 6 11.10 593 Related: 17695; Work: 17362
Q 7 30.36 1107 Experimental: 12858; results: 36192
Q 8 42.57 2 Stabilisieren: 203; konnte: 18118; sich: 73862; dieses: 18674; System:

28553
Q 9 81.98 50 We: 53641; conclude: 2958; with: 102476
Q 10 167.86 48 I: 87473; would: 19880; like: 17708; to: 119519; express: 2142
Q 11 222.91 8571 with: 102476; respect: 10168; to: 119519
Q 12 248.23 5 major: 8553; advantage: 3319; of: 148306; our: 26799
Q 13 276.81 2949 As: 96236; shown: 23813; in: 228856
Q 14 367.56 5105 in: 228856; contrast: 12264; to: 119519

Table 5.4: Phrase searches: The average runtime per phrase query is shown. Queries
9–14 clearly stand out in terms of time taken

Analysis. As shown in Table 5.4 more than half of the selected phrases evaluate under
50ms due to exploitation of the full-text index.

Most phrases are evaluated in interactive time. We were especially interested in the
limits of the presented architecture, thus we considered the phrases (Q9-Q14), that took
much longer than the other queries, c.f. Figure 5.4, for more thorough analysis.

As the results indicate, there is no direct relationship between the query times and the
number of results. Instead, queries with large result sets may be evaluated fast while
other, slower evaluated queries yield much smaller result sets.

One general observation that can be derived from the resulting times is, that phrases

98

www.manaraa.com

5.5 Queries and Performance Results

 0
 50

 100
 150
 200
 250
 300
 350
 400

minor drawback

major deficiency

particularly strong

special interest group

major contribution

Related W
ork

Experimental results

Stabilisieren konnte sich dieses System

W
e conclude with

I would like to express

with respect to

major advantage of our

As shown in

in contrast to

Se
ar

ch
 ti

m
e

in
 m

s

Search phrases

phrase search time in ms

0 2 79 18 51 593 1107 2
50

48
8571 5

2949

5105

Figure 5.4: Phrase search: Result graph showing the average runtime needed to search
for each phrase and the total number of matching nodes

containing a frequent word (i.e., stopwords that happen to occur frequently in natural
language corpora, or proper names) tend to be evaluated an order of an magnitude
slower than phrases made up only of rare words.

This is mainly due to BaseX’ evaluation strategy:

• all index hits for each keyword are evaluated as intermediate result lists containing
node ids, and

• subsequently merged in order to produce a complete result set.

Thus, in the worst case, lots of large intermediate result lists per keyword have to be
sorted and merged, often producing only very small final results.

Increasing the total number of keywords may pose an additional penalty on the runtime
as each keyword adds an intermediate result list to the workload.

Possible solutions to overcome the problems with large intermediate result sets could
involve the following suggestions:

• The pipelining concept could be pushed down to the index access operation: in-

99

www.manaraa.com

5 Kickstarting an Infrastructure

w1∧¬(w2) germany problem change science formation situation space properties material power
germany – 4574

165.79 ms
4483
154.87 ms

4168
140.47 ms

4382
141.89 ms

4731
156.94 ms

4585
139.52 ms

4202
169.72 ms

4528
140.8 ms

4673
136.14 ms

problem 3251
173.73 ms

– 3252
175.13 ms

3306
167.65 ms

3325
170.35 ms

3321
166.29 ms

3281
152.81 ms

3286
165.41 ms

3336
163.97 ms

3348
155.28 ms

change 3439
159.77 ms

3486
171.13 ms

– 3458
156.73 ms

3414
156.08 ms

3555
162.56 ms

3504
148.84 ms

3439
153 ms

3528
154 ms

3528
144.54 ms

science 3786
143.55 ms

4106
162.19 ms

4023
154.2 ms

– 4023
143.71 ms

4204
162.9 ms

4137
138.74 ms

4014
144.41 ms

4185
145.08 ms

4176
136.19 ms

formation 2734
136.45 ms

2862
153.72 ms

2781
151.56 ms

2737
133.34 ms

– 2904
148.74 ms

2876
126.66 ms

2745
127.8 ms

2850
128.21 ms

2894
125.16 ms

situation 2768
154.08 ms

2747
156.02 ms

2714
154.75 ms

2837
152.14 ms

2790
153.56 ms

– 2843
138.8 ms

2796
148.51 ms

2850
142.76 ms

2859
135.29 ms

space 2155
125.63 ms

2176
130.55 ms

2162
128.62 ms

2176
122.56 ms

2193
119.82 ms

2262
125.89 ms

– 2176
115.86 ms

2221
116.93 ms

2222
108.28 ms

properties 2808
142.32 ms

2974
153.58 ms

2917
146.36 ms

2895
138.09 ms

2811
130.64 ms

3064
154.07 ms

2960
126.4 ms

– 2956
131.86 ms

3023
128.93 ms

material 2375
133.97 ms

2554
148.37 ms

2503
145.77 ms

2516
133.83 ms

2457
126.44 ms

2576
136.36 ms

2581
122.7 ms

2427
126.19 ms

– 2576
120.46 ms

power 2066
121.55 ms

2085
129.79 ms

2040
122.01 ms

2063
117.08 ms

2127
117.49 ms

2155
120.91 ms

2089
105.56 ms

2088
115.57 ms

2131
112.28 ms

–

Table 5.5: Boolean search performance results and hits. Each combination of two key-
words has been executed against the database

stead of materializing all resulting node references in one run, they could be re-
turned blockwise or one by one. This way, only those nodes will be requested that
are actually required by a query, and retrieval can be skipped if it is clear that the
remaining references will not be part of the final result.

• The pipelined retrieval could also be used to skip node retrieval whenever a query
requests only parts of the result. As an example, a limitation to the first n results
means that retrieval can be skipped as soon as those results have been evaluated.

5.5.3 Boolean Search

Boolean search is another basic technique supported by many retrieval systems, and
considered in the context of this evaluation. It introduces the operators AND, OR plus
NOT, which allow users to exclude or include terms, or combine them in an arbitrary
fashion. These operators are commonly used to cut down result sizes and filter unwanted
hits from result listings.

Query: Boolean search using XQuery Full Text

//*[text() contains text "germany" ftand ftnot "problem"]/ancestor::file

100

www.manaraa.com

5.6 Summary

Results: Query results for the fully-sized OPAC corpus are depicted in Table 5.5.

��

������

�������

�������

�������

�������

�������

��
�
��
�

��
��

��
��

��
��

��
��

��

���

���

���

���

����

����

����

����

����

�
�
�
�
�
��
�
��
�
��
�

�
�
�
��
�
�
��
�
�
�
�
��
�
�
��
��

�
��
��
��

�
�

�������������������

��������������������������
������������������������

Figure 5.5: Average runtime for the boolean full-text queries, ran against six different
sized corpora

Analysis: Compared to the keyword search shown before, we see a linear degradation
in performance. This again is explained by the fact, that possibly large intermediate
results will have to be merged by BaseX in order to produce the result set. Once
more the queries perform fast enough regarding interactivity constraints. An upper
bound in our example is set by query change∧¬(problem) yielding 3,486 result nodes
in 175.13ms.

5.6 Summary

The previous observations show that the X-technology stack is ready to cope with state-
of-the-art requirements and able to deliver retrieval infrastructure needed to build even
complex systems. XML-DBMS may be considered mature enough to drive retrieval
systems ready for production.

Yet XQuery with its various extensions is capable of delivering more than just state-
of-the-art: due to the hierarchical nature of XML and its ability to contain structured
as well as unstructured data, users are able to exploit these characteristics in order
to improve the relevance of their search results. The languages’s expressiveness can

101

www.manaraa.com

5 Kickstarting an Infrastructure

be applied to numerous problems. To give an idea of what kind of questions may
be answered, consider a search for documents, that contain the words “substrate” &
“transformation” in a maximum distance of at most 4 words, followed by another page
containing the word “compound”.

(: Exploiting structural and textual proximity. :)
let $words:= ("substrate", "transformation"),

$following := "compounds"
return
//*[text() contains text {$words} distance at most 4 words

and
. /following-sibling::*/text() contains text {$following}

]/ancestor::file

Listing 20: XQuery example exploiting structure and textual proximity

Skilled experts can steer the system from within a single language. XQuery gives trans-
parent access to underlying system components such as the full-text engine (hard to
achieve in a traditional general purpose system) and allows implementors to work di-
rectly on the underlying data.

All of that can be done in a single domain specific technology stack reducing the com-
plexity of both system components involved and technologies to be mastered by devel-
opers.

102

www.manaraa.com

6 Conclusion

In a nutshell, this thesis was about innovative ways to leverage the powerful infrastruc-
ture of modern XML database management systems (XML-DBMS) for cleaner, more
efficient and compact application development and system architectures.

XML-DBMS provide sophisticated technology that, today, is generally underestimated
and can be used in far more application domains than it is currently the case. Used to
full capacity, they can provide lean system architectures with less components involved,
a clean and pure technology stack and reduced amounts of code involved.

The thesis was focused on the question in how far the tree-awareness of recent DBMSs
can be used to enhance filesystems with database technology. The main goal was to
provide means to query the data stored in filesystems and to enhance/combine the data
storage and query capabilities of operating systems using XML database technology.

BaseX, a high performance, native XML-DBMS, built on top of a improved XPath
accelerator numbering scheme [25], laid the foundation for our work. Throughout the
work BaseX was applied to new and unanticipated application domains.

In Chapter 2, we introduced a new XML dialect, the Filesystem Markup Language
(FSML), to construct a database view of the filesystem and its contents. FSML provides
a uniform view on the filesystem’s content and allows developers to leverage the complete
XML technology stack on filesystem data. Raw files, along with their metadata exposed
in XML, are stored in the database. Together with a representation of the file hierarchy,
the database contains all necessary data to model a filesystem.

For database-unaware applications, we established a link between DBMS and OS in
Chapter 3. We contributed a filesystem in userspace, backed by the BaseX DBMS
system. The DBMS is mounted as a conventional filesystem by the operating system

103

www.manaraa.com

6 Conclusion

kernel. The architecture provides access via the established filesystem interface as well
as database-enhanced access to the same data. By doing that, we have demonstrated the
possibility of providing legacy filesystem access while storing the data in the database and
have it ready to be queried. As the database itself can now be accessed via the filesystem
namespace, the system exposes formerly siloed data via the filesystem interface. The
concept has been introduced as metadata-aware, deep access to files.

For database-aware applications, the architecture reveals an additional declarative API to
work on file objects. While it is still possible to use the established and proven interface
with an imperative programming style (using system calls and processing byte streams),
we additionally can use XQuery to gain semantic, declarative access to file objects (using
database queries and processing file objects in XML). That way, we contributed a system
architecture that makes it easier for application developers to build content-oriented
(data-centric) retrieval and search applications dealing with files and their contents.

The standardized and established XML technology stack, specified by the World Wide
Web Consortium (W3C), can now be used without the need to resort to other program-
ming languages and concepts. In doing so, we achieve a low-entry barrier for developers
and data. Developers must not learn software-specific retrieval languages or APIs to re-
gain stored data. Data can be (transparently) stored in a conventional Unix filesystem
and processed as such (i.e., backups, Unix commands). However, files’ inherent meta-
data is externalized and stored, and is generically accessible via a formerly non-existent
declarative API. Relevant content for search tasks is indexed and optimized for later
retrieval without additional tools to master and maintain.

In summary, the thesis contributed a facility for representing filesystem data system-wide
in a uniform way and, at the same time, offering domain-specific query and processing
languages to work with filesystem data at a higher abstraction level. The extended
XML database now entails all components needed to act as central system for search
and retrieval tasks on heterogeneous file data.

In order to let developers benefit most from the proposed architecture, we contributed a
powerful XQuery application framework in Chapter 4. It allows for the development of
applications relying on the W3C technology family. Services that profit from a uniform
search and retrieval service can now be implemented on a more high-level and generic
abstraction layer, while still being able to benefit from full-fledged database support. As
a proof of concept, we conducted a complete development cycle for an OPAC (Online

104

www.manaraa.com

Public Access Catalogue) system in Chapter 5. The implementation revealed that the
proposed architecture is ready to drive expert information system that work with distinct
data sources using an XQuery-driven development approach.

We consider the discussed techniques as a general blueprint appropriate to design and
develop XML/XQuery driven information architectures that work on formerly hetero-
geneous data sources in a standardized and uniform manner.

105

www.manaraa.com

www.manaraa.com

List of Figures

1.1 Dual access to filesystem data . 17
1.2 Basic (simplified) idea of storing trees (such as file hierarchies, XML doc-

uments) in a RDBMS [21] . 19
1.3 Big picture and ultimate goal: Applications, users, and developers gain

two access paths to file contents. Proven and stable access via the filesys-
tem interface is retained. An enhanced, metadata-aware (deep) file access
is provided as the data is stored in a joint storage for filesystem and data-
base. The database is mounted as a filesystem by the operating system
kernel (“Filesystem Trail”). Database-enhanced (declarative, “queryable”)
access can leverage the complete range of XML technologies on filesys-
tem data. Additionally an application framework to build software inside
a unified W3C stack is proposed (“Database Road”) 23

2.1 Storing trees (such as file hierarchies, XML documents) in the pre/distance/
size encoding . 27

2.2 Joint storage for filesystem and database. Uniform XML representation
of filesystem content . 28

2.3 Simon St. Laurent’s vision of an enhanced, “deeper” filesystem 33

3.1 Ultimate goal: Database-enhanced (“Database Road”) and conventional
access (“Filesystem Trail”) to filesystem data 40

3.2 Information and execution flow in a stackable filesystem 42
3.3 The Anti-Virus Stackable Filesystem [49] 43
3.4 The Fuse framework. Fuse kernel module (.ko), libfuse user library

and an implementation (myfs_impl). Request handling of a filesystem
call (e.g., stat(2)) during the execution of an ls(1) command. (Fig-
ure redrawn from the Fuse project documentation at http://fuse.
sourceforge.net/) . 45

107

www.manaraa.com

List of Figures

3.5 System architecture to mount the database as conventional filesystem into
the operating system . 49

3.6 Kernel - Fuse - BaseX-FS communication. Logic in XQuery 50
3.7 Implementing an XML database as filesystem in userspace. Fuse acts as

a database client . 51
3.8 TreeMap algorithm (left), recursive visualization (right) 61
3.9 Simple Search Mode. Searching for .htm files. Results are shown and

highlighted in both views, a generic tree view and the space-filling tree map 62
3.10 Using XPath to search through image files 63
3.11 Zooming into the file. The continuation of the file hierarchy along the

file’s inherent structure (“Semantic Zoom”) 64

4.1 Uniform Application Stack: XML technology on all three tiers of a system
architecture . 67

4.2 Examples of desktop-caliber web applications. Above, left hand: the lo-
gin screen of http://icloud.com, which is broadly similar to native
login and configuration scenarios on the OS X. Right hand: an http:
//iwork.com frontend reproducing its native counterpart, the Numbers
office application (both using the SproutCore framework). Below: a pre-
sentation application built with the Cappuccino framework running on
http://280slides.com/ . 70

4.3 Sausalito’s integrated application stack . 73
4.4 System overview: BaseX-Web’s general operating sequence 75
4.5 System overview: The main building blocks of BaseX-Web. jetty:// is

used as web server and servlet container. The server itself connects to the
BaseX XML-DBMS as a database client 76

4.6 Using the Model-View-Controller paradigm to build a uniform X-technology
stack . 77

4.7 Complete request-response cycle. User requests trigger the “XQuery con-
struction” step, i.e., the controller gets embedded into a page template.
Processing of the result page is done by the BaseX query processor, which
accesses databases if needed . 81

5.1 DSpace System Architecture Overview . 87

108

www.manaraa.com

List of Figures

5.2 The core components of the web architecture:
Model contains the complete data extracted from KOPS
View represents an URL and orchestrates user requests to parameterized
XQuery function calls
Controller holds the logic to retrieve and return search results

The screenshot shows the computed result rendered inside a browser when
opening http://xmlopac/app/opac/simple-search?field=author&value=
Berthold,%20Michael . 93

5.3 Average runtime in ms (red line/right y-axis) to evaluate 45 keyword
queries on each of the six corpora (x-axis). Blue line/left y-axis shows the
accumulated number of matching documents 96

5.4 Phrase search: Result graph showing the average runtime needed to search
for each phrase and the total number of matching nodes 99

5.5 Average runtime for the boolean full-text queries, ran against six different
sized corpora . 101

109

www.manaraa.com

www.manaraa.com

List of Listings

1 FSML file element with file attributes . 29
2 Metadata extracted for .mp3 file using ExifTool transducer 31
3 XQuery pseudo-code to retrieve relevant e-mails 32
4 DeepFS with facts and folder elements that establish a metadata hierar-

chy. Navigation into the file along the metadata hierarchy can be achieved
once the database is mounted as a filesystem 35

5 Retrieve file attributes. stat(2) family of system calls 52
6 File attributes. Fields of a stat structure 52
7 Fuse operation to get file attributes . 53
8 File attributes are returned from the database as XML fragment. The

values are filled into the stat buffer subsequently passed to the OS kernel 53
9 Implementation of a nullfs request handler using system calls on the

native filesystem . 54
10 List of currently mounted Fuse implementations 55
11 Chaining XQuery functions on the analogy of Unix pipes 58
12 XQuery: Who is sending the most e-mails? 59
13 XQuery: Show all e-mails from people not listed in my address book . . . 60

14 XML fragment notifying the servlet to add a cookie to the response . . . 82

15 KOPS-FSML.xml: Extracted full-text from online resource 90
16 KOPS-FSML.xml: Bibliographic metadata about online resource 90
17 An XQuery function returning all file elements matching a specific key,

value combination . 91
18 The XQuery OPAC simple search view . 92
19 A keyword search function for the OPAC XQuery module (opac.xq) . . . 95
20 XQuery example exploiting structure and textual proximity 102

111

www.manaraa.com

List of Listings

21 Phrase search query result . 123
22 Kopsmedia bibliographic metadata stored as FSML 124
23 Functions to benchmark the phrase search performance 125

112

www.manaraa.com

List of Tables

3.1 Fuse request handlers a high-level implementation can choose to register
for . 46

3.2 Filesystem path names to XPath/XQuery path expressions 47
3.3 Timings of Fuse-based filesystems performing a recursive directory listing 56

5.1 Statistics on the original KOPS library resources and the resulting data-
base kops-fsml.xml . 94

5.2 Runtime statistics for the keyword search queries against six differently
sized corpora . 96

5.3 Number of results and time for generating the results for a keyword search
against the 8000 file database . 97

5.4 Phrase searches: The average runtime per phrase query is shown. Queries
9–14 clearly stand out in terms of time taken 98

5.5 Boolean search performance results and hits. Each combination of two
keywords has been executed against the database 100

113

www.manaraa.com

www.manaraa.com

Bibliography

[1] 28msec, Sausalito: XQuery in the Cloud, 2012. [Online]. Available: http://www.
28msec.com/documentation/overview (visited on 02/03/2012).

[2] G. Athanasopoulos, L. Candela, D. Castelli, P. Innocenti, Y. Ioannidis,
A. Katifori, A. Nika, G. Vullo, and S. Ross, “The Digital Library Reference
Model,” ISTI-CNR, Tech. Rep., 2007.

[3] A. Azagury, M. Factor, Y. S. Maarek, and B. Mandler, “A novel navigation
paradigm for XML repositories,” JASIST, vol. 53, no. 6, pp. 515–525, 2002.

[4] A. Berglund, Extensible Stylesheet Language (XSL) Version 1.1, 2006. [Online].
Available: http://www.w3.org/TR/2006/REC- xsl11- 20061205/ (visited on
01/23/2012).

[5] P. A. Boncz, T. Grust, M. van Keulen, S. Manegold, J. Rittinger, and J.
Teubner, “MonetDB/XQuery: A Fast XQuery Processor Powered by a Relational
Engine,” in SIGMOD Conference, 2006, pp. 479–490.

[6] —, “Pathfinder: XQuery - The Relational Way,” in VLDB, 2005, pp. 1322–1325.

[7] M. Brantner, D. Florescu, D. A. Graf, D. Kossmann, and T. Kraska,
“Building a database on S3,” in SIGMOD Conference, 2008, pp. 251–264.

[8] T. Bray, J. Paoli, and C. M. Sperberg-McQueen, Extensible Markup Lan-
guage (XML) 1.0, 1998. [Online]. Available: http://www.w3.org/TR/1998/REC-
xml-19980210 (visited on 01/23/2012).

[9] S. Burbeck, Applications Programming in Smalltalk-80(TM): How to use Model-
View-Controller (MVC), 1987. [Online]. Available: http://st-www.cs.uiuc.
edu/users/smarch/st-docs/mvc.html (visited on 12/19/2011).

[10] Y. Cai, X. L. Dong, A. Y. Halevy, J. M. Liu, and J. Madhavan, “Personal
information management with SEMEX,” in SIGMOD Conference, 2005, pp. 921–
923.

115

http://www.28msec.com/documentation/overview
http://www.28msec.com/documentation/overview
http://www.w3.org/TR/2006/REC-xsl11-20061205/
http://www.w3.org/TR/1998/REC-xml-19980210
http://www.w3.org/TR/1998/REC-xml-19980210
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.uiuc.edu/users/smarch/st-docs/mvc.html

www.manaraa.com

Bibliography

[11] M. J. Carey, D. J. DeWitt, M. J. Franklin, N. E. Hall, M. L. McAuliffe,
J. F. Naughton, D. T. Schuh, M. H. Solomon, C. K. Tan, O. G. Tsatalos,
S. J. White, and M. J. Zwilling, “Shoring Up Persistent Applications,” in
SIGMOD Conference, 1994, pp. 383–394.

[12] P. Case, M. Dyck, M. Holstege, S. Amer-Yahia, C. Botev, S. Buxton,
J. Doerre, J. Melton, M. Rys, and J. Shanmugasundaram, XQuery and
XPath Full Text 1.0, 2011. [Online]. Available: http://www.w3.org/TR/2011/
REC-xpath-full-text-10-20110317/ (visited on 01/23/2012).

[13] DBIS Group, University of Konstanz, BaseX - The XML Database, 2012.
[Online]. Available: http://basex.org/ (visited on 02/07/2012).

[14] EMC Corporation, Documentum xDB, 2012. [Online]. Available: http://germany.
emc . com / products / detail / software2 / documentum - xdb . htm (visited on
02/07/2012).

[15] D. Engovatov, D. Florescu, and G. Ghelli, XQuery Scripting Extension 1.0
Requirements, 2010. [Online]. Available: http://www.w3.org/TR/2007/WD-
xquery-sx-10-requirements-20070323 (visited on 02/03/2012).

[16] M. J. Franklin, A. Y. Halevy, and D. Maier, “From databases to dataspaces:
a new abstraction for information management,” SIGMOD Record, vol. 34, no. 4,
pp. 27–33, 2005.

[17] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole Jr., “Se-
mantic file systems,” in SOSP, New York, NY, USA: ACM, 1991, pp. 16–25. doi:
http://doi.acm.org/10.1145/121132.121138.

[18] Gluster, Inc., GlusterFS - A cluster filesystem capable of scaling to several
peta-bytes, 2012. [Online]. Available: http : / / www . gluster . org/ (visited on
02/05/2012).

[19] B. Gopal and U. Manber, “Integrating Content-Based Access Mechanisms with
Hierarchical File Systems,” in OSDI, 1999, pp. 265–278. doi: http://doi.acm.
org/10.1145/296806.296838.

[20] J. Gray, A. S. Szalay, A. Thakar, C. Stoughton, and J. vandenBerg, “On-
line Scientific Data Curation, Publication, and Archiving,” CoRR, vol. cs.DL/0208012,
2002. [Online]. Available: http://arxiv.org/abs/cs.DL/0208012.

[21] T. Grust, “Accelerating XPath Location Steps,” in SIGMOD Conference, 2002,
pp. 109–120. doi: 10.1145/564691.564705.

116

http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
http://www.w3.org/TR/2011/REC-xpath-full-text-10-20110317/
http://basex.org/
http://germany.emc.com/products/detail/software2/documentum-xdb.htm
http://germany.emc.com/products/detail/software2/documentum-xdb.htm
http://www.w3.org/TR/2007/WD-xquery-sx-10-requirements-20070323
http://www.w3.org/TR/2007/WD-xquery-sx-10-requirements-20070323
http://dx.doi.org/http://doi.acm.org/10.1145/121132.121138
http://www.gluster.org/
http://dx.doi.org/http://doi.acm.org/10.1145/296806.296838
http://dx.doi.org/http://doi.acm.org/10.1145/296806.296838
http://arxiv.org/abs/cs.DL/0208012
http://dx.doi.org/10.1145/564691.564705

www.manaraa.com

Bibliography

[22] T. Grust and M. van Keulen, “Tree Awareness for Relational DBMS Kernels:
Staircase Join,” in Intelligent Search on XML Data, 2003, pp. 231–245. [Online].
Available: http://www.springerlink.com/content/ltdcgv2t680w/.

[23] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and J. Teubner, “A SQL:1999
Code Generator for the Pathfinder XQuery Compiler,” in SIGMOD Conference,
2007, pp. 1162–1164. doi: 10.1145/1247480.1247642.

[24] T. Grust, J. Rittinger, and J. Teubner, “Why off-the-shelf RDBMSs are
better at XPath than you might expect,” in SIGMOD Conference, 2007, pp. 949–
958. doi: 10.1145/1247480.1247591.

[25] C. Grün, “Storing and Querying Large XML Instances,” Ph.D. Thesis, Univer-
sity of Konstanz, Konstanz, Germany, 2011. [Online]. Available: http://nbn-
resolving.de/urn:nbn:de:bsz:352-opus-127142.

[26] C. Grün, A. Holupirek, M. Kramis, M. H. Scholl, and M. Waldvogel,
“Pushing XPath Accelerator to its Limits,” in ExpDB, 2006.

[27] C. Grün, A. Holupirek, and M. H. Scholl, “Visually exploring and querying
XML with BaseX,” in BTW, 2007, pp. 629–632.

[28] C. Grün, S. Gath, A. Holupirek, and M. H. Scholl, “XQuery Full Text
Implementation in BaseX,” in XSym, 2009, pp. 114–128. doi: 10.1007/978-3-
642-03555-5_10.

[29] A. Y. Halevy, M. J. Franklin, and D. Maier, “Principles of dataspace sys-
tems,” in PODS, 2006, pp. 1–9. doi: 10.1145/1142351.1142352.

[30] P. Harvey, ExifTool - Read, Write and Edit Meta Information, 2012. [Online].
Available: http://www.sno.phy.queensu.ca/~phil/exiftool/ (visited on
02/22/2012).

[31] A. Holupirek and M. H. Scholl, “An XML Database as Filesystem in User-
space,” in Grundlagen von Datenbanken, 2008, pp. 31–35.

[32] —, “Implementing filesystems by tree-aware DBMSs,” PVLDB, vol. 1, no. 2,
pp. 1623–1630, 2008. [Online]. Available: http://www.vldb.org/pvldb/1/
1454237.pdf.

[33] A. Holupirek, C. Grün, and M. H. Scholl, “BaseX & DeepFS joint storage for
filesystem and database,” in EDBT, 2009, pp. 1108–1111. doi: 10.1145/1516360.
1516489.

117

http://www.springerlink.com/content/ltdcgv2t680w/
http://dx.doi.org/10.1145/1247480.1247642
http://dx.doi.org/10.1145/1247480.1247591
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-127142
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-127142
http://dx.doi.org/10.1007/978-3-642-03555-5_10
http://dx.doi.org/10.1007/978-3-642-03555-5_10
http://dx.doi.org/10.1145/1142351.1142352
http://www.sno.phy.queensu.ca/~phil/exiftool/
http://www.vldb.org/pvldb/1/1454237.pdf
http://www.vldb.org/pvldb/1/1454237.pdf
http://dx.doi.org/10.1145/1516360.1516489
http://dx.doi.org/10.1145/1516360.1516489

www.manaraa.com

Bibliography

[34] —, “Melting Pot XML: Bringing Filesystems and Databases One Step Closer,” in
BTW, Aachen, Germany, 2007.

[35] IEEE, The Open Group, and ISO/IEC JTC 1/SC22/WG15, “Single
UNIX Specification, Version 3,” The Open Group, Tech. Rep.

[36] Institute for System Programming RAS, Sedna Native XML Database Sys-
tem, 2012. [Online]. Available: http://www.sedna.org/ (visited on 02/07/2012).

[37] C. Ireland, D. Bowers, M. Newton, and K. Waugh, “A Classification of
Object-Relational Impedance Mismatch,” in DBKDA, IEEE Computer Society,
2009, pp. 36–43. doi: 10.1109/DBKDA.2009.11. [Online]. Available: http://dl.
acm.org/citation.cfm?id=1545012.1545492.

[38] Jesse J. Garrett, Ajax: A New Approach to Web Applications, 2005. [Online].
Available: http://www.adaptivepath.com/ideas/ajax-new-approach-web-
applications (visited on 12/13/2011).

[39] B. Johnson and B. Shneiderman, “Tree maps: A Space-filling Approach to
the Visualization of Hierarchical Information Structures,” in VIS, IEEE Computer
Society, 1991, pp. 284–291.

[40] A. Kantee, “puffs - Pass-to-Userspace Framework File System,” in AsiaBSDCon,
2007.

[41] A. Kantee and A. Crooks, “ReFUSE: Userspace FUSE Reimplementation Us-
ing puffs,” in EuroBSDCon), 2007.

[42] M. Kaufmann and D. Kossmann, “Developing an Enterprise Web Application
in XQuery,” in ICWE, 2009, pp. 465–468. doi: 10.1007/978-3-642-02818-2_39.

[43] M. Kay, XSL Transformations (XSLT) Version 2.0, 2007. [Online]. Available:
http://www.w3.org/TR/2007/REC-xslt20-20070123/ (visited on 01/23/2012).

[44] Linux Kernel Developers, Path walking and name lookup locking, 2005. [Online].
Available: http://www.mjmwired.net/kernel/Documentation/filesystems/
path-lookup.txt (visited on 02/22/2012).

[45] MarkLogic Corporation, MarkLogic: The Operational Database for Big Data,
2012. [Online]. Available: http://www.marklogic.com/solutions/overview.
html (visited on 01/23/2012).

[46] —, MarkLogic: The Operational Database for Big Data, 2012. [Online]. Available:
http://www.marklogic.com/products/overview.html (visited on 01/23/2012).

118

http://www.sedna.org/
http://dx.doi.org/10.1109/DBKDA.2009.11
http://dl.acm.org/citation.cfm?id=1545012.1545492
http://dl.acm.org/citation.cfm?id=1545012.1545492
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications
http://dx.doi.org/10.1007/978-3-642-02818-2_39
http://www.w3.org/TR/2007/REC-xslt20-20070123/
http://www.mjmwired.net/kernel/Documentation/filesystems/path-lookup.txt
http://www.mjmwired.net/kernel/Documentation/filesystems/path-lookup.txt
http://www.marklogic.com/solutions/overview.html
http://www.marklogic.com/solutions/overview.html
http://www.marklogic.com/products/overview.html

www.manaraa.com

Bibliography

[47] W. Meier, “eXist: An Open Source Native XML Database,” in Web, Web-Services,
and Database Systems, vol. 2593, LNCS, 2003, pp. 169–183. doi: 10.1007/3-540-
36560-5_13.

[48] —, eXist-db Open Source Native XML Database, 2012. [Online]. Available: http:
//exist.sourceforge.net/ (visited on 02/07/2012).

[49] Y. Miretskiy, A. Das, C. P. Wright, and E. Zadok, “Avfs: An On-Access
Anti-Virus File System,” USENIX Security 2004, 2004. [Online]. Available: www.
fsl.cs.sunysb.edu/docs/avfs-security04/avfs.pdf.

[50] D. A. Norman, Emotional Design: Why We Love (Or Hate) Everyday Things.
Basic Books, 2004, isbn: 0465051359.

[51] Pixware, Qizx, a fast XML database engine fully supporting XQuery, 2012. [On-
line]. Available: http://www.xmlmind.com/qizx/ (visited on 02/07/2012).

[52] A. Rajgarhia and A. Gehani, “Performance and extension of user space file
systems,” in SAC, 2010, pp. 206–213. doi: 10.1145/1774088.1774130.

[53] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson, XQuery 3.0: An XML
Query Language, 2011. [Online]. Available: http://www.w3.org/TR/2011/WD-
xquery-30-20111213/ (visited on 01/11/2012).

[54] J. Robie, D. Chamberlin, M. Dyck, D. Florescu, J. Melton, and J.
Siméon, XQuery Update Facility 1.0, 2011. [Online]. Available: http://www.
w3.org/TR/2011/REC-xquery-update-10-20110317/ (visited on 01/23/2012).

[55] K. H. Rose, S. Malaika, and R. J. Schloss, “Virtual XML: A toolbox and use
cases for the XML world view,” IBM Systems Journal, vol. 45, no. 2, pp. 411–424,
2006. doi: 10.1147/sj.452.0411.

[56] B. Schandl, “An Infrastructure for the Development of Semantic Desktop Appli-
cations,” Ph.D. Thesis, Universität Wien, Wien, Austria, 2009.

[57] M. Seiferle, “Implementing Web Applications Using XQuery,” Master’s thesis,
University of Konstanz, Germany, 2012.

[58] A. Singh, A FUSE-Compliant File System Implementation Mechanism for Mac
OS X, 2011. [Online]. Available: http://code.google.com/p/macfuse/ (visited
on 01/11/2012).

119

http://dx.doi.org/10.1007/3-540-36560-5_13
http://dx.doi.org/10.1007/3-540-36560-5_13
http://exist.sourceforge.net/
http://exist.sourceforge.net/
www.fsl.cs.sunysb.edu/docs/avfs-security04/avfs.pdf
www.fsl.cs.sunysb.edu/docs/avfs-security04/avfs.pdf
http://www.xmlmind.com/qizx/
http://dx.doi.org/10.1145/1774088.1774130
http://www.w3.org/TR/2011/WD-xquery-30-20111213/
http://www.w3.org/TR/2011/WD-xquery-30-20111213/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://www.w3.org/TR/2011/REC-xquery-update-10-20110317/
http://dx.doi.org/10.1147/sj.452.0411
http://code.google.com/p/macfuse/

www.manaraa.com

Bibliography

[59] R. Singh and H. S. Sarjoughian, “Software Architecture for Object-Oriented
Simulation Modeling and Simulation Environments: Case Study and Approach,”
Computer Science & Engineering Dept., Arizona State University, Tempe, AZ,
Tech. Rep., 2003.

[60] J. Snelson, D. Chamberlin, D. Engovatov, D. Florescu, G. Ghelli, J.
Melton, and J. Siméon, XQuery Scripting Extension 1.0, 2010. [Online]. Avail-
able: http://www.w3.org/TR/2010/WD-xquery-sx-10-20100408 (visited on
02/03/2012).

[61] S. St.Laurent, Bringing the File System into the File: Making Information
More Accessible Through Object Stores, 1998. [Online]. Available: {http://www.
simonstl.com/articles/filesyst.htm} (visited on 02/23/2012).

[62] M. Szeredi, Filesystem in USErspace, 2012. [Online]. Available: http://fuse.
sourceforge.net/ (visited on 12/05/2012).

[63] —, SSH Filesystem, 2012. [Online]. Available: http://fuse.sourceforge.net/
sshfs.html (visited on 02/05/2012).

[64] J. Teubner, “Pathfinder: XQuery Compilation Techniques for Relational Data-
base Targets,” Ph.D. Thesis, Technische Universität München, Munich, Germany,
2006.

[65] Tuxera Ltd, Tuxera NTFS-3G and Ntfsprogs, 2012. [Online]. Available: http:
//www.tuxera.com/community/ntfs-3g-download/ (visited on 02/05/2012).

[66] N. Walsh, A. Milowski, and H. S. Thompson, XProc: An XML Pipeline
Language, 2010. [Online]. Available: http://www.w3.org/TR/2010/REC-xproc-
20100511/ (visited on 01/23/2012).

[67] R. Weir, Developing an XML-based file format specification for office applications,
2011. [Online]. Available: http://www.oasis-open.org/committees/tc_home.
php?wg_abbrev=office (visited on 01/23/2012).

[68] E. Wilde, “Merging trees: file system and content integration,” in WWW, 2006,
pp. 955–956. doi: 10.1145/1135777.1135962.

[69] E. Zadok, “FiST: A System for Stackable File-System Code Generation,” PhD
thesis, Columbia University, 2001.

[70] E. Zadok and J. Nieh, “FiST: A Language for Stackable File Systems,” in
USENIX Annual Technical Conference, General Track, 2000, pp. 55–70.

120

http://www.w3.org/TR/2010/WD-xquery-sx-10-20100408
{http://www.simonstl.com/articles/filesyst.htm}
{http://www.simonstl.com/articles/filesyst.htm}
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/
http://fuse.sourceforge.net/sshfs.html
http://fuse.sourceforge.net/sshfs.html
http://www.tuxera.com/community/ntfs-3g-download/
http://www.tuxera.com/community/ntfs-3g-download/
http://www.w3.org/TR/2010/REC-xproc-20100511/
http://www.w3.org/TR/2010/REC-xproc-20100511/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office
http://dx.doi.org/10.1145/1135777.1135962

www.manaraa.com

Bibliography

[71] E. Zadok, R. Iyer, N. Joukov, G. Sivathanu, and C. P. Wright, “On
incremental file system development,” TOS, vol. 2, pp. 161–196, 2 2006. doi: 10.
1145/1149976.1149979.

121

http://dx.doi.org/10.1145/1149976.1149979
http://dx.doi.org/10.1145/1149976.1149979

www.manaraa.com

www.manaraa.com

Appendix

<phrase>
<search>minor drawback</search>
<ms>0.45</ms>
<hits>0</hits>
<index>

<ftcount name="minor">2218</ftcount>
<ftcount name="drawback">450</ftcount>

</index>
</phrase>
<phrase>

<search>major deficiency</search>
<ms>1.25</ms>
<hits>2</hits>
<index>

<ftcount name="major">8553</ftcount>
<ftcount name="deficiency">368</ftcount>

</index>
</phrase>
<phrase>

<search>Stabilisieren konnte sich dieses System</search>
<ms>42.57</ms>
<hits>2</hits>
<index>

<ftcount name="Stabilisieren">203</ftcount>
<ftcount name="konnte">18118</ftcount>
<ftcount name="sich">73862</ftcount>
<ftcount name="dieses">18674</ftcount>
<ftcount name="System">28553</ftcount>

</index>
</phrase>

Listing 21: Phrase search query result

123

www.manaraa.com

Appendix

<file name="1896748.pdf" suffix="pdf" st_size="533883">
<folder name=".1896748.pdf.deepfs">

<folder name="opacinfo">
<fact name="pagecount">17</fact>
<fact name="author">Berthold, Michael</fact>
<fact name="author">Wiswedel, Bernd</fact>
<fact name="author">Patterson, David E.</fact>
<fact name="title">Interactive exploration of fuzzy clusters using Neighborgrams</fact>
<fact name="town">Konstanz</fact>
<fact name="publisher">Bibliothek der Universität Konstanz</fact>
<fact name="year">2005</fact>
<fact name="format">Online-Ressource</fact>
<fact name="note">Article</fact>
<fact name="signature">|004</fact>
<fact name="language">Englisch</fact>
<fact name="category">Informatik</fact>
<fact name="url">http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-65525</fact>
<fact name="creation-date">November 17, 2004 21:34:22 (UTC)</fact>
<fact name="modification-date">October 13, 2008 14:42:40 (UTC +02:00)</fact>

</folder>
<folder name="fulltext">

<folder name="pages">
<folder name="page" number="1">

<fact name="text">
Interactive exploration of fuzzy clusters using Neighborgrams
Michael R.Berthold — Bernd Wiswedel — David E.Patterson

Department of Computer and Information Science,University of Konstanz,Box M712,78457 Konstanz,Germany

Data Analysis ResearchLab,Tripos Inc.,USA

Abstract
We describe an interactive method to generate a set of fuzzy clusters for classes of interest of a
given,labeled data set.

The presented method is therefore best suited for applications where the focus of analysis
lies on a model for the minority class or for small to medium-sized data sets.

The clustering algorithm creates one dimensional models of the neighborhood for a set of patterns
[…]

</fact>
</folder>
<folder name="page" number="2">

<fact name="text">[…]</fact>
</folder>
[…]

</folder>
</folder>

</folder>
</file>

Listing 22: Kopsmedia bibliographic metadata stored as FSML

124

www.manaraa.com

let $phrases:= ("minor drawback",
"major deficiency",
"major contribution",
"particularly strong",
"special interest group",
"Related Work",
"Experimental results",
"Stabilisieren konnte sich dieses System",
"We conclude with",
"I would like to express",
"major advantage of our",
"with respect to",
"As shown in",
"in contrast to"

)

for $phrase in $phrases
let
$find := function($p){//*[text() contains text {$p} phrase] },
$hits := count($find ($phrase)),
$ms := util:ms($find ($phrase))

order by $hits
return <phrase>{

<search>{$phrase}</search>,
<ms>{$ms}</ms>,
<hits>{$hits}</hits>,
<index>{

for $w in tokenize($phrase," ")
return

<ftcount name="{$w}">{
count(db:fulltext(., $w))

}</ftcount>
}</index>

}</phrase>

Listing 23: Functions to benchmark the phrase search performance

125

	Abstract
	Zusammenfassung
	Introduction
	Motivation
	Intrinsic Motivation - Personal Data Mess
	Professional Challenge - Retrieval Support for Filesystems

	Problem Description
	Research Approach
	Contribution and Outline

	The BaseX Filesystem View
	Joint Storage for Filesystem and Database
	The pre/distance/size Encoding
	The Encoded File Hierarchy

	Leverage Tacit Information Hidden in Files
	Transducers – Filetype-specific Data Extractors
	Implementation of a Transducer

	A Deeper Filesystem – The Metadata Hierarchy
	Related Work
	In a Nutshell

	An XML Database as Filesystem
	On Filesystem Prototyping
	Stackable Filesystems
	Filesystem in Userspace

	Mounting the Database as a Filesystem
	System Architecture
	Implementation Details
	Assessment

	Database-aware Applications
	XQuery your Filesystem
	Visual Access to Large Filesystem Data

	Considerations

	XQuery Application Framework
	Maturity of Web Applications
	Related Work
	Sausalito – XQuery in the Cloud
	eXist – the XQuery Servlet

	System Overview
	Model-View-Controller
	Application Layout
	Request-Response Cycle

	Summary

	Kickstarting an Infrastructure
	Online Public Access Catalog (OPAC)
	Konstanz Online Publication System (KOPS)
	XML OPAC
	Intention
	Foundation: General System Setup
	Configuration: Shaping a Retrieval Application

	Evaluation Setup
	Queries and Performance Results
	Keyword Search
	Phrase Search
	Boolean Search

	Summary

	Conclusion
	List of Figures
	List of Listings
	List of Tables
	Bibliography
	Appendix

	Text1: Konstanzer Online-Publikations-System (KOPS)
URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-206486

